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cmEx Optical Age-Depth Profiling for Fine-
Scale Site Reconnaissance

Center for Oldest Ice Exploration

D.P. Winebrenner, University of Washington; R. Bay, University of California - Berkeley

Critical Challenge: Regional and Local Bed Variabili

Preservation of oldest ice hinges on local bed
topography and geothermal flux — COLDEX could
miss oldest ice even if it is just a few kilometers away

Logistics costs preclude conventional ice coring for
exploratory drilling

Meet this challenge by building a next-generation ice
melt probe that uses optical dust-logging to profile
age vs. depth quickly in several locations

Probe will also provide thermal state of the ice sheet
bed, critical for understanding preservation of old ice

Many applications for other problems in glaciology
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Integration of Dust-Logging and the ‘Classical’ Ice Diver

Laser module

(Coherent Sting Rays) \
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Power leads with voltage (nominal 5Vdc)
controlled by DAC interfaced to Ice Diver
control board using SPI (probably on
daughter board).
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RS-232 interface to optical detector, using
spare UART on Ice Diver control board.
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* Challenges: 2.5 km depth (longer
spool), East Antarctic temperatures
(additional heaters)

COLBEX

Center for Oldest Ice Exploration



Subglacial Bedrock Activities

Not much activity due to COVID limitations

Completed projects
Ohio Range, Pirrit Hills

In progress
Thwaites Glacier - results from Mt Muphy, Hudson Mtn season delayed

Greendrill — delayed until at least summer 2022

Lots of future projects in planning stages
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Subglacial Bedrock Activities
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Sampling the bed
to reconstruct Greenland Ice
Sheet history

Pls: Schaefer & Briner
Young, Anandakrishnan, DeConto, Winckler

-> Uses existing drills on the ready from .
the US Ice Drilling Program. - EGRIP@®

-> Can drill through 700 m ice thickness
to obtain 4-m-long bedrock cores.

-> Drill sites selection criteria: frozen bed, A v
Safety/crevasse considerations, bedrock e Summit®
lithology, science questions (eg, NEGIS). iy




Slmulat/ons of Greenland ice: Drlllmg SItes sens:tlve monltors of
ice sheet response to past interglaciations

-> Locations chosen to represent a range of sites to constrain
ice sheet contributions to sea level during past interglacials.

-> At each of four target regions, ASIG and Winkie drills will be
used to acquire bedrock cores from a transect of sites.

ASIG Drill




Where in Greenland are we able to drill
using IDP’s current bed-access drills?

-> Need frozen basal thermal state
30.2% of GrlIS (using MacGregor BTS v2)

-> Need ice thickness <700 m
15.4% of GrIS

-> Both frozen and <700 m
4.8% of GrIS meets both criteria

-> Is it safe to work? Crevasses >0.005/yr strain rate
3.3% of GrIS (Poinar and Andrews, 2021)

-> Science and bedrock lithology considerations?
<<3.3% of GrIS
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glacial landscape

We will target

The selected sites check out for bedrock lithology; frozen bed;
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Subglacial Bedrock Activities

A multimillion-year-old record of Greenland vegetation
and glacial history preserved in sediment beneath

- Age (Ma)
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Lots of continuing work



Regional context

Modern observations show
unequivocally that the Amundsen Sea
Embayment is undergoing the largest

changes of any ice-ocean system in

Antarctica.
o PN RN s The question: Is this geologically
— and unprecedented?
meters or ICe per year

-10.0 6.0 30 -1.0 0405 &_

Smith et al., 2020



What we do know: Glacial history of Mount Murphy Massif

Exposed at:

Mt. Murphy Massif Bucher Ridge 6.8 ka
Digital Elevation Model (DEM) Mt. Murphy  striated bedrock W
— 2893 m asl [1518-998]

8.6 ka MID: 10.2 ka
LOW: 5.9 ka

Johnson et al., 2020



What we do know: Glacial history of Mount Murphy Massif
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Evidence lies below ice cover

Exposed at:
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What are we finding?

Depth profile from bedrock cores are luminescence
saturated.

Suggests no ice-free conditions in past 200-400 kyr
Still allows for ice thinning with residual snow, ice,
sediment.

UNIVERSITY OF

Y TEXAS

ARLINGTON




What are we finding?

19-KP-H1
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Measurable in situ *4C at concentrations unequivocally
above background

0
=

Depth in core (cm)
S

o

In situ 14C concentrations as high as 42,000 atoms gtin
core tops, and as low as 5,800 atoms g at depth.

130

0 20 40 60
[MC] (katoms g'l)



What are we finding?
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What does it all mean?

Consistent with output from simulations
that model 10s of meters of thinning over a
period of a few thousand years, followed
by rethickening in the recent past.

& Imperial College
London

Berkeley
Geochronology Center



& SALSA: Subglacial Antarctic Lakes Scientific
Access

* SALSA is in wrap-up phases with some aspects of the project already
closed out, some finishing out their extensions

* Three papers recently out for review, others soon to be

* Broader Impacts:

e Kathy Kasic (Cal State Sacramento) and team produced film “Lake at the
Bottom of the World”. Screenings at multiple film festivals and conferences,

including recently at AAAS meeting
e Other distribution options in the works



RAID update from John Goodge

* RAID platform completed successful tests and field trials during the
(pre-COVID) 2019-20 season and is considered by the project to be
field ready.

* During the current deployment restrictions, RAID is undergoing
further improvements and modifications with design and fabrication
work in the US.

* A recent paper in Annals of Glaciology reports on recent field trials.

Annals of Glaclology Deep ice drilling, bedrock coring and dust
logging with the Rapid Access Ice Drill (RAID)
* at Minna Bluff, Antarctica
IGS
John W. Goodge!, Jeffrey P. Severinghaus?, Jay Johnson?, Delia Tosi*

Article

and Ryan Bay”



SWAIS 2C (Sensitivity of the West Antarctic Ice
Sheet to 2°C)

* Drilling is led by NZ; US component of the project led by Molly Patterson
(SUNY Binghamton)

s The project will collect and

study geological (rocks),
glaciological (ice), and
geophysical (Earth physical
properties) data and
provide new information to
guide the development of
climate and ice sheet
numerical models to better
understand and predict how
the ice sheet on West
Antarctica will contribute to
future sea level rise.

- : Drilling site

losigisos Warm interglacial © GNS Science



