SAWG update

New papers!

www.nature.com/ismecomms

ARTICLE OPEN

Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

Christina L. Davis 1, Ryan A. Venturelli², Alexander B. Michaud^{3,29}, Jon R. Hawkings⁴, Amanda M. Achberger⁵, Trista J. Vick-Majors 16, Brad E. Rosenheim 16, John E. Dore⁸, August Steigmeyer⁹, Mark L. Skidmore 16, Joel D. Barker¹⁰, Liane G. Benning 11,12, Matthew R. Siegfried 13, John C. Priscu 16, Brent C. Christner 18, the SALSA Science Team*

© The Author(s) 2023

Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ^{13} C values for EPS (-25 to -30%) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS.

ISME Communications; https://doi.org/10.1038/s43705-023-00216-w

A diverse and active community of bacteria and archaea present in Mercer Subglacial Lake, evidence of evolutionary linkages in microbial communities beneath WAIS

First ever lake sedimentation identified in a subglacial lake

The life and death of a subglacial lake in West Antarctica

M.R. Siegfried^{1*1}, R.A. Venturelli^{2*1}, M.O. Patterson², W. Arnuk³, T.D. Campbell⁴, C.D. Gustafson⁵, A.B. Michaud⁶, B.K. Galton-Fenzi^{78,9}, M.B. Hausner¹⁰, S.N. Holzschuh¹, B. Huber¹¹, K.D. Mankoff^{12,13,14}, D.M. Schroeder^{15,16}, P.T. Summers¹⁵, S. Tyler¹⁷, S.P. Carter¹⁸, H.A. Fricker⁵, D.M. Harwood¹⁹, A. Leventer²⁰, B.E. Rosenheim²¹, M.L. Skidmore⁴, J.C. Priscu²² and the SALSA Science Team[‡]

- 'Hydrologic Science & Engineering Program, Department of Geophysics, Colorado School of Mines, Golden, Colorado 80401, USA
- ²Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401, USA
- Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, New York 13902, USA
- Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA
- ⁵Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA
- ⁶Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine 04544, USA
- ⁷Australian Antarctic Division, Kingston, TAS 7050, Australia
- 6 Australian Antarctic Program Partnership, Institute for Marine & Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
- ⁹Australian Centre for Excellence in Antarctic Science, University of Tasmania, Hobart, TAS 7001, Australia
- ¹⁰Division of Hydrologic Sciences, Desert Research Institute, Reno, Nevada 89512, USA
- "Lamont Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
- 13 Geological Survey of Denmark and Greenland (GEUS), 1350 Copenhagen, Denmark
- 18 Business Integra, New York, New York 10001, USA
- 14NASA Goddard Institute for Space Studies, New York, New York 10025, USA
- ¹¹Department of Geophysics, Stanford University, Stanford, California 94305, USA
- ¹⁶Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
- ¹⁷Department of Geological Sciences and Engineering, University of Nevada, Reno, Nevada 89557, USA
- ¹⁸Physical Sciences Department, San Diego City College, San Diego, California 92101, USA
- ¹⁹Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588, USA
- ²⁰Department of Geology, Colgate University, Hamilton, New York 13346, USA
- College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA
- ²²Polar Oceans Research Group, Sheridan, Montana 59749, USA

Subglacial carbon cycle reveals timing and extent of deglacial grounding line retreat

AGU Advances

RESEARCH ARTICLE

10.1029/2022AV000846

Peer Review The peer review history for this article is available as a PDF in the Supporting Information.

Key Points:

- We used clean-access hot water drilling to sample water and sediment from an active subglacial lake in West Antarctica
- The presence of natural-level radiocarbon in sediment and water samples enabled us to trace the subglacial carbon cycle
- We find that the deglacial extent of grounding line retreat reached up to 250 km inland of present before re-advancing in the Holocene

Constraints on the Timing and Extent of Deglacial Grounding Line Retreat in West Antarctica

Ryan A. Venturelli¹, Brenna Boehman², Christina Davis³, Jon R. Hawkings⁴, Sarah E. Johnston⁵, Chloe D. Gustafson⁶, Alexander B. Michaud⁷, Cyrille Mosbeux⁶, Matthew R. Siegfried¹, Trista J. Vick-Majors⁸, Valier Galy², Robert G. M. Spencer⁹, Sophie Warny¹⁰, Brent C. Christner³, Helen A. Fricker⁶, David M. Harwood¹¹, Amy Leventer¹², John C. Priscu¹³, Brad E. Rosenheim¹⁴, and SALSA Science Team

¹Colorado School of Mines, Golden, CO, USA, ²Woods Hole Oceanographic Institution, Woods Hole, MA, USA, ³University of Florida, Gainesville, FL, USA, ⁴University of Pennsylvania, Philadelphia, PA, USA, ⁵University of Alaska Fairbanks, Fairbanks, AK, USA, ⁶Scripps Institution of Oceanography, La Jolla, CA, USA, ⁷Bigelow Laboratory for Ocean Sciences, East Boothbay, ME, USA, ⁸Michigan Technological University, Houghton, MI, USA, ⁹Florida State University, Tallahassee, FL, USA, ¹⁰Louisiana State University, Baton Rouge, LA, USA, ¹¹University of Nebraska-Lincoln, Lincoln, NE, USA, ¹²Colgate University, Hamilton, NY, USA, ¹³Polar Oceans Research Group, Sheridan, MT, USA, ¹⁴College of Marine Science, University of South Florida, St. Petersburg, FL, USA

How to successfully collect subglacial sediment

LIMNOLOGY
and
OCEANOGRAPHY: METHODS

© 2023 Association for the Sciences of Limnology and Oceanography.

A method for successful collection of multicores and gravity cores from Antarctic subglacial lakes

Brad E. Rosenheim ⁰, ¹* Alexander B. Michaud ⁰, ² James Broda, ³ Alan Gagnon, ³ Ryan A. Venturelli, ⁴ Timothy D. Campbell, ⁵ Amy Leventer, ⁶ Molly Patterson, ⁷ Matthew R. Siegfried, ⁸ Brent C. Christner, ⁹ Dennis Duling, ¹⁰ David Harwood, ¹⁰ John E. Dore, ¹¹ Martyn Tranter, ¹² Mark L. Skidmore, ⁵ and John C. Priscu, ¹³ SALSA Science Team

¹College of Marine Science, University of South Florida, Saint Petersburg, Florida

²Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine

³Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts

⁴Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado

⁵Department of Earth Sciences, Montana State University, Bozeman, Montana

⁶Department of Earth and Environmental Geosciences, Colgate University, Hamilton, New York

⁷Department of Earth Sciences, Binghamton University, Binghampton, New York

⁸Department of Geophysics, Colorado School of Mines, Golden, Colorado

⁹Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida

¹⁰Department of Earth and Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska

¹¹Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, Montana

¹²School of Geographical Sciences, Bristol University, Bristol, UK

¹³Polar Oceans Research Group, Sheridan, Montana

And from the subglacial bedrock world...

The Cryosphere, 17, 1787–1801, 2023 https://doi.org/10.5194/tc-17-1787-2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

Subglacial bedrock cores reveal Thwaites Glacier was thinner in the last few thousand years than it is today.

Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene

Greg Balco^{1,★}, Nathan Brown^{2,★}, Keir Nichols^{3,★}, Ryan A. Venturelli^{4,★}, Jonathan Adams^{3,6}, Scott Braddock⁵, Seth Campbell⁵, Brent Goehring^{7,8}, Joanne S. Johnson⁶, Dylan H. Rood³, Klaus Wilcken⁹, Brenda Hall⁵, and John Woodward¹⁰

¹Berkeley Geochronology Center, Berkeley, CA, USA

²Earth and Environmental Sciences, University of Texas Arlington, Arlington, TX, USA

³Earth Science and Engineering, Imperial College London, London, UK

⁴Geology and Geological Engineering, Colorado School of Mines, Golden, CO, USA

⁵School of Earth and Climate Sciences, University of Maine, Orono, ME, USA

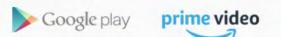
⁶British Antarctic Survey, Cambridge, UK

⁷Earth and Environmental Sciences, Tulane University, New Orleans, LA, USA

⁸Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, USA

⁹Australian National Science and Technology Organisation (ANSTO), Lucas Heights, NSW, Australia

¹⁰Geography and Environmental Sciences, Northumbria University, Newcastle-upon-Tyne, UK


[★]These authors contributed equally to this work.

