Part I: Scientific Motivation for Replicate Coring at Hercules Dome:

Vas Petrenko, University of Rochester

1. Ability to replicate / confirm measurements and findings

- Why do measurements need to be replicated in general?
 - Verify measurement integrity
 - Mitigate analytical issues during main core measurements
 - Confirm novel findings / measurements made with new techniques
- Example of specific scientific application:
 - Is the decadal/centennial variability in water isotopes spatially coherent even on very short distance scales? (Markle)
- With a 98 mm diameter core, we will be very limited on available Herc Dome ice
 - Unlikely that ice for replication of any type of measurement would be immediately available from the main core

2. Provide larger ice amounts needed for some studies

- Last Interglacial (Eemian) ice annual layer thickness could be as low as ≈1 mm. The entire Eemian could be contained in as little as ≈10 m
- Examples of studies / questions for Eemian that can probably only be answered if replicate cores were available (require ≈300 2000 g ice):
 - Impact of regional and global volcanism on Eemian climate (tephra studies, Kurbatov, Dunbar and Iverson)
 - Investigating Eemian dust sources and atmospheric transport geochemical composition and physical properties, including new techniques (Aarons; Kreutz and colleagues)
 - Investigating wildfire activity and emissions in a warmer world using C_2H_6 , C_2H_2 , CO isotopes, $\delta^{13}CH_4$ (Aydin, Saltzmann, Petrenko, Brook)
 - Climate sensitivity of terrestrial Gross Primary Productivity (GPP) using COS and possibly δ^{13} CO₂ (Aydin, Saltzmann, maybe also Brook)
 - Investigating greenhouse gas cycling (CO₂, CH₄, N₂O) during Termination II and last glacial onset using isotopes (Brook)
- Studies in other time intervals that also require larger sample amounts -- see above; also ¹⁴CO₂ for improving radiocarbon calibration curve (Petrenko)

3. Improve chances of success with answering the key driving questions for Hercules Dome project

- "How much, how fast?" with respect to the possible WAIS collapse during Eemian
- What if the water isotope approach yields inconclusive results?
- ⁸⁶Kr excess can record the intensity of firn barometric pumping (or storminess)
- If WAIS collapsed during the Eemian, Hercules Dome would be closer to coast, lower altitude and stormier → more pronounced ⁸⁶Kr excess
- Can also get timing of collapse
- Large ≈800 g samples needed

Part II: Shallow Coring at Dome C to Understand Galactic Cosmic Ray Flux Variability

Vas Petrenko, University of Rochester

How constant is the galactic cosmic ray flux?

Image: CERN

Useful for:

- Improving estimates of past solar activity and irradiance (based on atmospheric ¹⁰Be and ¹⁴C)
- Understanding glacial exposure histories, erosion rates, ice dynamics (based on in situ ¹⁴C, ¹⁰Be, ³⁶Cl, ²⁶Al)
- Discerning past changes in supernovae activity

Measurements of cosmogenic nuclides in meteorites suggest that cosmic ray flux is stable on long time scales, but uncertainties are 30% or larger

How can ¹⁴CO in ice cores record the past cosmic ray flux?

Figure: Modified from Schwander, 2007, EQS

- In situ cosmogenic ¹⁴C: neutrons, muons
- Leaks out of firn grains, but fully retained below firn layer
- In situ cosmogenic ¹⁴C dominates the CO phase at most ice core sites
 - Muon-produced ¹⁴C signal below firn layer
 - Higher-energy cosmic rays
 - Insensitive to solar or geomagnetic modulation – pure signal of galactic cosmic ray intensity
- Dome C: low accumulation rate helps to maximize ¹⁴C signal
- Should be able to constrain long-term (kyr-scale) cosmic ray flux variability over past ≈7 kyr to ≈15%

Logistics

Image: European Space Agency

- Partnership with French program
 - Joel Savarino
 - Melanie Baroni
- Target drilling season: 2022-23
- 2 dry-drilled cores to 300m with IDP 4" or Foro 400 drill