ICWG Update

SAB/TAB Meeting
March 6, 2017
Madison, WI

Foreman, Fudge, Kurbatov,
Osterberg, Petrenko, Severinghaus, Steig
ICWG Activities 2016-2017

• Significant updates and revisions to the 2016 LRSP
• Continued work with IDDO to draft science requirements for:
 – “Portable Firn Coring Drill” to 50-100 m
 – “Agile Ice Coring Drill” to 400-900 m
• Work with IDDO on comparison of DISC vs. IDD costs for potential Hercules Dome core
• Initial updates to technology priorities and planning matrix
• Remote ICWG annual meeting in the coming month
SPICEcore Update

• 2016-17 Field Season: Remaining ice retroed. Borehole logging for temp, dust, video complete. Camp removed.

• CPL: 555-734 m and 1078-1462 m processed in 2016; 735-1077 m and 1463-1751 m will be processed in June

• 3rd Science Meeting in September (19th-20th) at UW
Collaborative project: U. New Hampshire (J. Souney, M. Twickler), UC Irvine (M. Aydin, E. Saltzman), U. Washington (T.J. Fudge, E. Steig), NASA – GSFC (T. Neumann)

SPICECORE Timeline

- **2013**:
 - Planning Workshop
 - Greenland drill test

- **2014**:
 - Planning Workshop

- **2015**:
 - Science Workshop
 - Drill to 1751m, begin packup

- **2016**:
 - Science Workshop
 - Camp shutdown

- **2017**:
 - Science Workshop

South Pole drilling operations:
- 2013: Planning Workshop
- 2014: Planning Workshop
- 2015: Science Workshop
- 2016: Science Workshop
- 2017: Science Workshop

South Pole ice retrograde:
- 2013: Planning Workshop
- 2014: Planning Workshop
- 2015: Science Workshop
- 2016: Science Workshop
- 2017: Science Workshop

NICL CPL’s:
- 2013: Planning Workshop
- 2014: Planning Workshop
- 2015: Science Workshop
- 2016: Science Workshop
- 2017: Science Workshop
SPICECORE – Funded Science

- **Isotopes:** U. Washington, U. Colorado
- **Chemistry:** Dartmouth, U. Maine, S.D. State
- **Gases:** Oregon State, Penn State, Scripps, UC Irvine, Rochester, Stony Brook
- **Phys props:** Penn State
- **10Be:** Columbia, U. Washington
- **ECM:** U. Washington
- **Volcanic markers:** NM Tech, U. Maine
- **Dust log:** UC Berkeley
SPICECORE Visual stratigraphy (Penn State)
SPICE Annual Layers in Chemistry (Dartmouth)
ECM (UW) & Vis-Strat (Penn St.)
Dartmouth Sulfate vs. UW ECM

- **Dartmouth SO4**
- **UW ECM**

SO$_4^{2-}$ (ppb)

Core Depth (m)
From J. Fegyveresi

42 matched ECM peaks during glacial
Comparison with WAIS Divide (West Antarctica) isotope record

\[\delta^{18}O = \left(\frac{^{18}O}{^{16}O}_{\text{sample}} - 1 \right) \times 1000 \% \]
Preliminary Glacial data

SPICECORE Methane (Oregon State, Penn State)
SPICECORE Other Gas Measurements

- CO₂ and 13CO₂: Oregon State
- δ^{15}N and δ^{18}O$_{\text{atm}}$: Scripps, Penn State
- N₂O: Oregon State
- 86Kr: Scripps, OSU
- CO and CO isotopes: Rochester, Stony Brook
- Carbonyl sulfide, methyl halides, light hydrocarbons: UC Irvine
SPICE Upstream Dynamics Project

Michelle Koutnik, Ed Waddington, Howard Conway, TJ Fudge, Max Stevens (UW)
Bob Hawley, Erich Osterberg, Mary Albert (Dartmouth)

- Where did the SPICE ice originate?
- What is the impact of ice advection on SPICE climate records?
- What is the spatiotemporal accumulation history upstream?
- Do current firn models accurately calculate compaction rates?
SPICE Upstream Field Plan

- **15-16** – Install poles and conduct first year of GPS survey
- **16-17** – Resurvey GPS network to define flowline, then setup camp ~50 km from SP along the flowline:
 - Drill firn holes for $\delta^{18}O$; install firn-compaction sensors
 - Collect 2 x 100m cores for chemistry and micro-CT scanning, and log boreholes for density
 - Collect snow samples and radar data
- **17-18** – Monitor firn sensors; log boreholes
- **18-19** – Monitor firn sensors; log boreholes; take out all equipment
TAYLOR GLACIER PROJECT

Pics: Petrenko (lead), Brook, Severinghaus

Field Work:

Main Project Goals (Petrenko group):
- Investigating in situ cosmogenic 14C production in ice
- Investigating the involvement of old carbon reservoirs in the deglacial CH$_4$ budget

Results (Petrenko group):

Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH$_4$ and 14CO production rates

Vasili V. Petrenkoa,*, Jeffrey P. Severinghausb, Hinrich Schaeferc, Andrew M. Smithd, Tanner Kuhle, Daniel Baggenstosf, Quan Huag, Edward J. Brookh, Paul Rosei, Robb Kulinj, Thomas Bauskak, Christina Harthl, Christo Buizertm, Anais Orsib,n, Guy Emanueleb, James E. Leeb, Gordon Brailsfordb, Ralph Keelingb, Ray F. Weissb
TAYLOR GLACIER PROJECT – MORE RESULTS

Petrenko et al,
submitted
Figure 2. $\Delta^{14}CH_4$, $\delta^{13}C-CH_4$, $\delta D-CH_4$ and CH_4 measured in Taylor Glacier samples (blue markers, error bars represent 1-σ uncertainty) plotted against INTCAL13, EDML $\delta^{13}C-CH_4$, EDML $\delta D-CH_4$ (Bock et al. unpublished data) and WAIS Divide continuous CH_4 respectively. The Taylor Glacier $\Delta^{14}CH_4$ data has only undergone preliminary corrections for in-situ $^{14}CH_4$ production. The Taylor Glacier $\delta^{13}C-CH_4$ and $\delta D-CH_4$ data have not been corrected for firn column gravitational and diffusive fractionation.

Dyonisius et al., 2016, AGU meeting
Paleo Ice Project (PIP)
Field Location: Allan Hills Blue Ice Area

Logistic Advantages:

• Close proximity to McMurdo Station

• ~ 120 miles to Taylor Dome C-130 landing site
PIP Goals

Collect a high quality 1250 m long ice core at a site where ice has not been disturbed by interaction with the bedrock.

Develop an ice core time scale and use that time scale to illuminate the spatial distribution of ice throughout the main ice field (ice park concept).

Develop a continuous, uniformly sampled glaciochemical, stable water isotope and trapped greenhouse gas record for the entire ice core.

Make 30% of the continuous ice core samples available to the community at the end of the project.

Expected time interval: Minimum last 250 ka (covering the Eemian interglacial), more likely at least 450 ka, ideally (as some evidence suggests) ~ 2.5 Ma years.
Track 4: Two dated tephra layers that outcrop at the surface in the ablation zone can be tracked up glacier, to provide powerful constraints on the age scale of the ice column. Depths and ages in black come from dated ash layers; preliminary epochs with depth range in blue are from a Dansgaard–Johnsen age model.

unpublished 2015/2016 radar (Campbell, Conway, Spaulding)
PROPOSED LAW DOME PROJECT

PIs:
Petrenko (lead), Severinghaus, Buizert
Collaborative with Australia PIs Etheridge, Smith and Curran

Field Work:
2017-18, 2018-19. Drilling with 3” Eclipse, 4” drill and BID-Deep

Main Project Goals:
- Constrain variations in atmospheric hydroxyl radical abundance for past ≈150 years using 14CO measurements
- Explore the potential of δ^{86}Kr as a proxy for movement of Southern Hemisphere westerlies
- Improve understanding of in situ cosmogenic 14C in ice
LAW DOME PROJECT KEY POINTS

- OH is a key parameter in chemical state of the troposphere
- Affects the lifetime of many radiatively important species (e.g., CH$_4$, aerosols)
- OH is unconstrained back in time beyond \approx1980
- 14CO produced in atmosphere by cosmic rays; removed by OH
- 14CO has been used to successfully monitor modern OH
- Atmospheric 14CO in ice is complicated by in situ cosmogenic 14CO
- Very high accumulation at Law Dome minimizes the in situ cosmogenic 14CO component
C + 15*4, (D" 8 +
 ! "$%# &' () *+, "$ & -(

2T ! /*%%(%V- N8%7,,#. 4) %+"/8>%(%#45%85 ">,#' /#,%$X N8%8) TY%
0T- 5% (#5%" $%/*%5%7,,#. 4) %2

RT%V(#5% #4%(%85 ">,#' /#,%,/: #5%8%85#" 6' #1%8%() %U' /8/5E%
7=%%(%V) 45%85#" 6' %) 4() 5Y%

. " /0(1+2*3+%(03 0(1, " 4*#" &1+5" 16(7" 8 (! 9 (; +<)=0+1+(3 (&" (" /0+1(>1"><", %") &/0+//%4+(7' 1%(8, @+13& (AB<

[5("%) E%4'/ 8') %7#,4%(%) "% 7:) %7") % 7+,*%785'/9+5) %57%

RT%,,,/ #: #5% %=%8]4#: .,), *%#"5%%=%85#" 6' #^ _NONN&88%8*%1\%4'/ 8') %
U%%+99,),]=")) %[[0%)' 7"*4%8%)' 6784% /44/8>%5%V- N8%8/D/*) %
3T%), #6D), E%7, *%]U1aT%) %7"%#') %#4) 4Z%
Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate

Eric J. Steig1,2, Kathleen Huybers3, Hansi A. Singh2, Nathan J. Steiger2, Qinghua Ding4, Dargan M. W. Frierson2, Trevor Popp5, and James W. C. White6

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{antarctic_climate_change.pdf}
\caption{Antarctic surface climate models showing temperature change and δ^{18}O anomaly.}
\end{figure}
Greenland Mass Balance and Recent Climate Projects

GreenTrACS Traverse:
Osterberg, Hawley, Marshall

Disko Bay Project:
Das, Frey, Evans, Smith

FirnCover/ACT Project:
MacFerrin, Marshall, Colgan
GreenTrACS Traverse Accumulation and Melt Studies
GREENLAND SUMMIT PROJECT

PIs:
Petrenko (lead), Brook, Severinghaus

Field Work:
2013, 2014 and 2015. Drilling with 3” Eclipse and BID

Main Project Goals (Petrenko group):
• Investigating in situ cosmogenic 14C production and retention in ice
• Investigating the potential of 14CH$_4$, 14CO and 14CO$_2$ in ice as tracers
^{14}CO, $^{14}\text{CH}_4$ and $^{14}\text{CO}_2$ content vs. depth in the firn air samples.

Hmiel et al., 2016, AGU meeting
The first and most detailed record of the last 110,000 years of climate ever recovered – GISP2 (25 institutions).
It changed the way we think about climate!

(1) Why does climate change?
(2) How fast can climate change?
(3) Have humans impacted climate?
(4) How much of a change is needed to impact humans?
GISP 21 2019-2022

10 km away from GISP2

New 1600 m long, high resolution record that covers the last 13 ka:
• Sea Ice
• History of anthropogenic emissions
• Volcanic forcing
• Dust storms and source areas
• Forest fires

Overlaps more with instrumental period.
North Pacific Ice Core Sites
Denali Ice Core 1200-Year Annual Climate Record

Denali Annual Accumulation

Recent doubling of accumulation

PNAS in review

Denali Melt Frequency
Eclipse Icefield Project: Kreutz and Campbell

Figure: Seth Campbell (UMaine)
Eclipse Icefield

Figure: Seth Campbell (UMaine)

650 m of ice!
Eclipse Icefield Accumulation Record
Field Season at Mount Logan and Eclipse: May-June 2017
Photo: Karl Kreutz (UMaine)
ICWG Tech Investment Discussions

• Build the Agile Ice Coring Drill capable of drilling to 400-900 m depth
• Build a replica of the IDD drill for Arctic & Antarctic work
• Consider a hot water coring system capable of drilling to ~200 m in warm sites like Chile, NZ, Asia