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Study of Ice Borehole Closure by Finite
Element Method
F. Li, B. Koci, J. Kelley

Polar Ice Coring Office, University of Alaska
Fairbanks, Fairbanks, AK 99775, U.S.A.

ABSTRACT

The ice borehole closure may affect the ice drilling operation when
the closure rate reaches some critical level. It is essential to estimate
the closure rate of ice boreholes for ice drilling program planning.
To estimate ice borehole closure under complex ice and boundary
conditions, a finite element model was developed. The ice, in this
study, was treated as a non-linear, visco-incompressible fluid. Glen’s

ice flow power law was employed. A direct iteration method was
used.

Varification studies using Nye’s formula show that the model
gives accurate results in closure rate, strain rate and stresses with
errors at the 4th digit in strain rate. Test with field measurements
show that the exponent of power law should be considered as a vari-
able of ice effective stresses to get more accurate results. An empir-
ical relation between the exponent and effective stress was obtained
with field measurements. Nye’s formula is effective under ordinary
ice conditions.

1. INTRODUCTION

Ice boreholes are drilled into glaciers or ice sheet from time to
time in order to study the internal structure of the ice and its move-
ments. Unless they are artificially supported, these boreholes grad-
ually close up under the pressure of the overlying ice. Some drilling
projects in Greenland and Antarctica require boreholes in deep, cold
ice which must be maintained open for a period of hours or days to
allow instruments to be lowered to the ice sheet bed. Therefore it
is important to know the ice borehole closure rate for designing the
borehole diameter to be drilled.

The only analytical formula available for estimating ice borehole
closure is the Nye’s solution [8] to an infinite long hole subjecting
uniform surface pressure. Actual ice borehole closure are caused by
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the overlying ice body force. For a liquid-filled ice borehole, the
hole surface subjects nonuniform vertical pressure. Moreover, the
ice sheet bottom may be frozen onto the rock bed which must have
some effect on the ice borehole closure. A compressed ice flow might
also have some effect on the borehole closure. What the difference
might be with Nye’s formula to these real ice conditions remains

unknown.

The purpose of the study presented here is to examine Nye’s
formula with ice borehole measurements, and to develop a finite
element model which is able to estimate ice borehole closure under
complex ice and boundary conditions.

2. METHOD OF COMPUTATION
2.1 Flow Law of Ice

The basic postulate is that polycrystalline ice is an incompress-
ible, nonlinear viscous fluid. Experiments by Rigsby {10] demon-
strated that hydrostatic pressure does not affect the flow law, which
is justification for treating ice as incompressible (Hutter, {7]). Thus
stress tensor o;; can be written as

Oij = —~pbij + 0ij, (2.1)

where p is called hydrostatic pressure, which produces no change of
shape; o}, is deviatoric stress tensor which produces no change of
volume, and &§; =1i#f i=j or 6;; =0if i £ ;.

For Newtonian fluids, there is a linear relationship between devi-
atoric stress and strain rate as:

ol = (1 + &ij)uj, (2.2)

where 4 is viscosity coefficient, ¢ is strain rate tensor. While under
a long-term stable load, ice flow may be considered to be in the
secondary creep process. It usually has a nonlinear stress-strain rate
relationship under a high stress state as typically presented by Glen
(3]:
é(j = AT"‘"O’é’-, (23)
where r is effective stress, given by
2r? = gj;0};. (2.4)
The exponent » in equation (2.3) varies from 2 to 4 (Hutter, [7]) with
a mean of about 3. So » is usually taken as a constant, and n =3 is
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adopted for normally encountered glaciers and ice sheets (Paterson,
[9]). Details about n used in this model will be disscussed in the next
section. Coefficient A in equation (2.3) depends on ice temperature,
crystal size and orientation, impurity content and possibly other
factors. It varies with the absolute temperature T according to the
Arrhenius relation

A = Aezp( %), (2.5)

where R is the gas constant (8.3147/mol/°K), Q is the activation energy
for creep and 4, is a constant. Paterson [9] gave values of

A, =42x1073/5.Pa®, Q=6x10"7/mol. for T < -10°C (2.6)

A, =2.0x10%/s.Pa®, Q=139%x1057/mal. for T > —10°C. 2.7)

Considering equation (2.2), equation (2.3) may be written in the
form of

O’E" = 2;1.8“',' (28)
with .
‘.L = m—_—;. (2-9)

Equations (2.3) through (2.9) were used in the modeling. Direct
iterative methods were used in solving the global equations and cal-
culating stresses. In each iteration process, the nonlinear relation of
equation (2.3) was treated linearly with equation (2.8) and equation

(2.9).
2.2 Finite Element Formulation

The ice borehole was modeled as an axisymmetric cylinder with a
centered symmetric axis Z. In cylindrical coordinates, the deviatoric
stress vector {¢'} can be written as

{,,}={ ’ } { o } a0
a BEy

7 244Yes

tig

where o/, 0}, o, are normal stresses in the principal directions of radial,
circurnferential and axial respectively , and 7/, is shear stress. The
strain rate vector {¢} can be expressed in partial velocities {U} as

é ou
- ¥
- o _
{5} - { é, } = é ] (2'11)
Far feyde
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where é,, ¢ and ¢, are normal strain rates, r,, is shear strain rate. u,
w are velocities along R, Z axes respectively. From equation (2.10)

1
" 1 0
1

(€} = 2u1{é}, (2.12)

where
(213)

1
1=[0 b 0}. (2.14)

To consider the incompressibility in the finite element formulation, a
penalty method (Cuvelier and Segal, {2]) was used, which may also
reduce computing time and memory. In the penalty method the
continuity equation is perturbed with a small number o times the
pressure p:

and I is the unit matrix,

ap + divi = 0. (2.15)
It can be written as .
P = —divii= ~Mivi, (2.16)
where ) = 4 is called penalty number. Thus
—P=Aé +éo+&)=AL, 1, 1, 0){é} = AD{¢é}, (2.17)
where
D=0, 1, 1, 0} (2.18)

To avoid ill-conditioning of global equations and numerical difficulty,
the penaity number A was chosen 10° in double precision (Cook et

al, [1}).

A four node isoparametric ring element was used. The element
shape functions are

Ni=(+&)1+m),  (=1234) (2.19)
where
_{-& i=l4 = {-n =12
“‘{e. i=2,3° ™ ""_{m i=3,4 @20

Strain rate-displacement matrix

[B]=[Bls B?n BS, B1]| (2.21)
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with
P L0 T
B;:[ 0 0 %_Ni. %ﬁ‘] . (3=1,2,3,4) (2.22)
Then
{¢} = [B){u}, _ (2.23)
where
{u}=luy, wy, wsy wy, us wa, ug wy]T. (2.24)
The element stiffness matrix is
1 1
(#]* = 2r / / (ABTDB + 2uB" B)\J|rd¢dn, (2.25)
-1 /=1

where |J| is the determinant of the Jacobian matrix:

. o 93
V= [ %€ 25] - (2.26)
o9, om

For rectangular elements the consistant element nodal loads caused
by body forces can be computed as for non-isoparametric elements.

2.3 Computation Methods

The direct iterative methods were used in solving the global equa-
tions and computing element stresses. As a first step, all us in each
element stiffness matrix were arbitrary set equal to a constant, e.g.
1. After assembling the global stiffness matrix, each element strain
rate was found by solving the global equations. Then the stresses
for each element were determined by equation (2.3) with an iteration
scheme : in the first step u(,) = H;t_)_—, = 1, then the stress deviators

olyyy Were found. With these new o}y Te+1) was calculated with

(2.4) and 4y was obtained by

1
i+1) = 0.5(py + —), 2.27
B(i+1) (P(') + 2AT(’:;:)) ( )

and so on. This procedure was repeated until Iy ~ pi+1)l/ By < 0.05.
The global stiffness matrix elements were replaced by each new el-
ement stiffness matrix with its final iteration uy4,). After all the
element stiffnesses were replaced in the global matrix, the solving
procedure was repeated. This global equation solving iteration was
continued until each element iteration number ¥ 1.

3. TEST OF THE FINITE ELEMENT MODEL
3.1 Test with Nye’s Formula
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For an infinite long cylindrical hole with uniform tension q applied
to the hole surface radially, the radial strain rate at the hole surface
is given by Nye’s formula [8]:

o= _!‘a: = A(-'L")", (3.1)

where a is hole radius; u, is hole closure rate at the hole surface;
4 and n have the same meaning as in equation (2.3) which means

equation (2.3) is applicable to this solution. The closure rate at the
hole surface is

Ug = —aA(%)". (3.2)
Nye also gave relative strain rate and relative radial stress as:

; 3

(ﬁ—.) = (g) (3.3)
4

(s;:) - (&), (3.4)

where r denotes radius of a spot in the hole wall, ¢, and o, are strain

rate and radial stress at the spot. The assumptions for this analitical

solution include: 1) zero strain rate in the hole axis direction, i.e.
és=0;and 2) o/__ =0, OF é-o =0.

and

To run the computer model a typical ice borehole was chosen with
¢ =107pa, n =3, A = 2.9869 x 10-**(s~1pa~3) (corresponding to -15°C) and
a =0.05m. The results show that the numerical model gives accurate
results as Nye's formula does, with errors at the 4th digit in relative
strain rate and 3rd digit in closure rate as shown in Figure 1.

3.2 Test with Data from Byrd Station, Antarctica (Dry Hole)

Gow [4] presented detailed results of measurements in the 309-m
deep ice borehole at Byrd Station, Antarctica. The measurements
were taken yearly from December 1958 to February 1962. The thick-
ness of ice sheet at Byrd Station is 2,400 m. The hole had steel cas-
ing installed to a depth of 36-m. According to the measurements,
closure rates were calculated with diameters measured in Decem-
ber 1958 and January 1961. Measured ice densities were 830kg/m® at
65-m, 900kg/m® at 100-m and 916kg/m* at 309-m. Temperatures were
chosen with constant -28.2°C from ice surface to 60 meter depth,

then linearly decreasing to —28.35°C at 120-m and —28.4°C at 309-m
depth.

Because the model results are sensitive to the exponent n in equa-
tion (2.3) and n seems not to be a constant with stress, an attempt
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was made to establish an empirical relation between n and effective
stress r with the closure rate data from Byrd Station. To fit each
data, specific values of n were found by runing the model. Then a
temporary empirical formula of n was found. By adjusting the pa-
rameters of this formula to best fit the data, a final empirical formula
was established as:

n = 2.85+ 0.014~. (3.5)

To be conservative, a modified relation was adopted in standard
computations as:

n=2.9+0.01r. (3.6)

where r is in bars. With this formula the model was run, and the
yielded results in ice borehole closure rate show a good agreement
with the field measurements as shown in Figure 2.

To examine Nye’s formula, first a value of n = 3 was used in the
formula to calculate the ice borehole closure rates. The results are
generally in 3 times of the measured values of closure rates, as shown
in Figure 2. To use the exponent n as a variable in Nye’s formula,
an empirical relationship of n and ice hydrostatic pressure P, was
found with the measurement data from Byrd Station, which can be
written as

n = 2.86 + 2.376 x 10~3P;(bar). (3.7)

With this relationship the Nye’s formula fits the measurement data
well as shown in Figure 2.

3.3 Tust with Data from Dye 3, Greenland (Liquid Filled Hole)

To examine the model for a liquid-filled ice borehole, data from
Dye 3, south Greenland (Hansen and Gundestrup, [6]; Gundestrup
and Hansen, [5]) were used. Because significant closure occurred only
in the upper 800-m portion, only this portion of the ice borehole was
modeled. Ice density of 921k¢/m*® and temperature of —20°C were used
for modeling. Diameter measurements in 1983 and 1985 were used
for examining the model. According to the liquid density profile
(Hansen and Gundestrup, [6]), the liquid density was chosen as of
903, 985, 990 and 965 kg/m*® at 120-, 250-, 300- and 800-m levels,
respectively, to calculate the liquid pressure. Between these points
the liquid density was assumed linearly changing. The upper 120 m
was free of liquid and the hole casing length was 86.8 m.

A feature of a liquid-filled ice borehole is that the effective stress
is small near the ice borehole due to ice pressur nearly balanced by
liquid pressure. So the exponent n may change in a different way
than equation (3.4) which is for dry ice borehole. To examine this a
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similar method as for finding equation (3.4) was used, and another
empirical formula of n was found:

n=215+0.77, (3.8)

which was used by the model to get best fit with the data from
Dye 3. The modeling results together with Dye 3 data are shown in
Figure 3. From Figure 3 one can see that the model can still give
good resuits for liquid-filled holes with the empirical formula (3.8).
Model results for Dye 3 hole show that the effective stress near the
borehole is in the range of 1 to 1.3 bar.

4. APPLICATION OF THE FINITE ELEMENT MODEL

As an application the model has been used to calculate the closure
rates of an 3000 meter deep ice borehole under different conditions
of boundary, temperature and density. Large scale compressed ice
flow effect on the ice borehole closure has also been examined.

4.1 Standard Computation

To determine the input temperature profile, ~35°C ice surface
temperature and -10°C borehole bottom temperature were chosen,
and the profile shape was determined nonlinearly by refering to mea-
surements and theoretical calculations. Ice density profile used in the
standard computation is linearly distributed with the constant be-
low a 300-m depth. Both the temperature and density profiles are
shown in Figure 4 with solid lines.

Model results for different diameter holes are shown in. Figure 5.
From this Figure one can see the ice borehole closes very quickly
at the lower part of the hole, and all holes will close up in one day
below the 2,500-m level. These results also varify the relationship
that the closure rate ratio of different diameters of ice boreholes is
equal to the diameter ratio.

4.2 Temperature and Density Effects

To compare the temperature effect on ice borehole closure rate,
another temperature profile with ice surface temperature of -50°C
was chosen to run the model as shown in Figure 4 by the dotted
line. The model results are shown by the dotted line in Figure 6.
These results show that for a 15°C change in temperature, the closure
rate will change 8 times at about the 1,500-m level.

To compare the ice density effect on the ice borehole closure rate,
a density profile was used as the dashed line in Figure 4. The model
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resuits are shown in Figure 6 with a dashed line. These results show
that the effect of ice density on ice borehole closure is relative small
and not very important.

5. CONCLUSIONS

A finite element model had been developed which can estimate ice
borehole closure under complex ice and boundary conditions. While
examination show that Nye’s formula is effective for calculating the
ice borehole closure rates as long as a variable exponent n is con-
sidered. Empirical relations of exponent n and ice effective stress r,
as well as ice hydrostatic pressure have been found with field mea.
surernents, which may be used in estimating the ice borehole closure
rates by a finite element model or the Nye’s formula.

The modeling results show that the temperature effect on ice
borehole closure rate is significant with 8 times change in closure rate
at a temperature change of 15° at about the 1,500-m deep level. The
effects of ice density on ice borehole closure is small and negligible.
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