Subglacial geomicrobiology: community input on drilling and coring

Ice Drilling Science Community Workshop April 2011

Jill Mikucki

Dartmouth – Earth Sciences

Subglacial Microbiology: Science questions

- Cell abundance, diversity, ecology
- Preservation of biological material
- Viability of cells in icy environments
- Subglacial Lifestyles
 - Adaptation to and evolution in isolated environments
 - Microbial metabolism increase weathering reactions
- Flux of metabolic products (including GHGs CO₂ and CH₄)

Wahl et al.

- Discovery driven
- Hypothesis driven

Emerging themes in subglacial processes:

- Subglacial Environments contributes to the global carbon budget
 Pg C (cells + DOC) in Antarctic subglacial environments Priscu et al. (2008)
 0.5 Pg C freshwater; 686 Pg C open ocean Whitman et al. (1998)
- Subglacial microbes grow using (overridden) carbon, iron and sulfur as energetic substrates
- Hydrology an important control on microbial community structure

Subglacial Microbiology: Science questions

Sampling Subglacial Environments:

Pink basal ice (NGRIP) J. White (INSTAAR)

East Antarctic Ice Plumes Bell et al. (2011)

Samples of opportunity vs. Strategic sampling for biology

- Interested in similar environments to other disciplines
- Subglacial lakes and lake sediments
- Basal ice, subglacial sediments
- •Integrate with future efforts (i.e. new destinations for the DISC drill) with a dedicated biology core
- •Clean collection of samples (holes with drilling fluid)
- •Logistics labs on site (to melt ice, run analyses, etc.

Subglacial Environmental Code of Conduct:

- NSF evaluates projects on an individual basis
- •Environmental Review for any project where subglacial water is present at the base [ice coring or access drilling] regardless of whether or not there is biology in the project (i.e. IEE or CEE)
- Likelihood that clean access techniques must be applied in any subglacial environment (Environmental stewardship requirements)

Currently: a minimum of 10² cells / mL should not be exceeded No similar requirements for Greenland

Subglacial Environmental Code of Conduct:

Clean Access for drilling Subglacial Lake Whillans

Instrument cleaning protocol
 3% Hydrogen peroxide and pressure washing
 UV treatment for cables and hoses

Hot water drilling
 Water filtration
 'Pasteurization'
 UV treatment

Monitoring of Bioload

WISSARD water filtration test setup

Input from 15hp pump

2um filter (150 gallons)

0.2um filter

WISSARD water filtration test setup

output to 0.2um filter

output to 185nm UV filter

Destruction of organics and germicida

185nm UV filter

254nm UV filter

Monitoring Clean Techniques

- Bioload
- Cell viability
- •Establishing baseline for nutrients, trace elements, etc.

- Contaminants (bacterial cultures) do not adhere consistently to stainless steel.
- $3\% H_2O_2$ reduces contamination to below detection (<300 cells ml⁻¹).

Vick and Michaud (Graduate students in the Priscu Lab)

Cell Viability Assay

Christner et al.

WISSARD Monitoring Conclusions

- Measurements in this test demonstrate that the filtration system is successful in removing viable cells
- Coupled with pasteurization, occurring in the boiler of the hot water drilling system, there is expected to be a further decrease in the number of viable cells
- Water analyzed in this test contained 3 orders of magnitude more cells than expected in Antarctic water sample

Christner et al.

Sampling Subglacial Environments: strategies/concerns

- Clean Access
- Time in borehole
- Large volumes needed for molecular biology
 - *In situ* filtering of 100s of liters (time)
- Instrumentation of boreholes for biogeochemistry
- *In situ* sample collection(time)

Recent Science Highlights: an ecosystem perspective

The Glacial Ecosystem

(CH₄)

Glacial Environments are Players in Earth's Biogeochemical Cycles

- •Evidence for a spectrum of thermodynamically favorable REDOX reactions (Skidmore -Review in press)
- •Aerobic and Anaerobic transformation of organic carbon overridden by ice (Wadham et al. 2008)
- •Lithotrophic lifestyles: Iron and Sulfur REDOX metabolism

Hodgson et al. 2008

Subglacial Metagenome Analysis

Total no. of sequences 40,285 (contigs)

Total sequence size 11,783,762 (basepairs)

Shortest sequence length 31

Longest sequence length 714

Average sequence length 292.51

Representative sequences from most cellular processes

Year-Long Study of Microbial Processes at the Juan de Fuca Ridge Using Biological Osmotic Samplers (BOSS)

Evidence for Seismicity Influencing Deep Sea Primary Productivity

Peter R Girguis

Loeb Associate Professor of Natural Sciences
Harvard University
pgirguis@oeb.harvard.edu

The Goal = Develop a sampling system for *in situ* microbiological studies

The Biological Osmotic Sampling System (BOSS)

- Preservation of microbiological and geochemical samples over time
 - DNA, RNA, proteins, dissolved ions, volatiles
- Scalable in size /performance
 - Can sample from µL to mL per day (Jannasch et al 2004)
 - Can be deployed in IODP boreholes (CORKS)
- Proven record in sampling microbes and chemistry over time
 - (Wheat et al 2000, 2003, 2008; Robidart et al, in review)
- Requires little to no electrical power

H₂O

BOSS: mapping temporal changes in bacterial diversity over one year

- BOSS samples were collected over a year; coincident with seismic events at Juan de Fuca (3/30/08– 4/9/08)
- Seismic events known to change vent fluid chemistry
- Changes in microbial composition and protein expression after seismic events

Conclusions

- Clean access still needs optimization and development
- •The WISSARD test season important step forward in clean access protocols
- 'Agile' filtration units, compatible materials and clean drills for a diversity of borehole projects and clean access needs
- Dedicated biology cores and basal material
- Only the beginning of subglacial geomicrobiological exploration