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Analytical Solutions for Determining
Ice Core Temperatures

by

Debendra K. Das
S. Srikanta Jois
John J. Kelley

University of Alaska Fairbanks
Fairbanks, Alaska 99775

Abstract

Analytical solutions have been developed in
cylindrical coordinates to predict temperature pro-
files in ice cores. Three geometric configurations
have been investigated: (1) an infinite cylinder;
(2) a semi-infinite cylinder; and (3) a finite cylin-
der. Final solutions have been compactly listed
and results generated from them are presented as
nondimensional temperature charts which would
be useful to the students currently engaged in the
design and development of a thermo-mechanical
ice coring device at our university.

Introduction

The Polar Ice Coring Office (P1ICO), operated by the
University of Alaska Fairbanks (UAF) for the
National Science Foundation, is charged with the
development and operation of ice coring drills and
augers for scientific research. The primary goal is
to sampie deep within the world's ice caps to study
evidence of past climatic variations and global
warming.

Common to all of the deep ice sampling devices to
date has been the use of thousands of gallons of
drilling fluids, such as diesel fuels, trichloro-
ethylene, fluorocarbons, etc., in a designated
pristine environment. Due to environmental
concerns, an alternative deep ice coring thermo-
mechanical drill which would be both environ-
mentally safe and effective is being developed at
the Mechanical Engineering Department of UAF.

The ice coring program has lead to a number of
educational projects for our mechanical engi-
neering students at both graduate and under-
graduate levels. At the undergraduate level, engi-
neering design plays a central role and individual
students have participated in building components
of different drill systems and testing them in the
field. At the graduate level, independent research
has been undertaken on heat transfer modeling of

the drill and the ice core. Puture plans calil for
experimental studies at the ice test well completed
by UAF in 1990. The present article pertains to
heat transfer education and shows how simple
analytical methods developed herein can be
applied to practical engineering problems.

The internal flow geometry of the hot water coring
drill is shown schematically in Figure 1. It
involves hot water flow in the outer annulus that
meits the ice near the tip of cutting tools and
assists in drilling at a faster rate. The cooler water
flowing through the inner annulus carries the
chips up and eventually melts them. The water is
circulated via hoses to the top of the hole where the
cooler water goes through a heater and is injected
back through the hot water hose.

This is a new technology. Rinaldi et al. (1990) have
reported that, aithough hot water drilling has been
successful, a coring device of this type has not been
developed. A very important factor in this design
is to use an extremely low thermal conductivity
material for the innermost cylinder surrounding
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Figure 1. Internal flow geometry of the thermo-
mechanicali coring driil.
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the core. Before we can design a prototype hot
water-mechanical drill, we must have an estimate
on the rate of warming of ice cores via analytical
heat transfer studies. The present study
constitutes the basis for analyzing the heat
transmission into the ice core before the design and
field test of such a drilling device.

During the first phase we have focused on one
fundamental problem: to determine the interior
temperature distribution in a c¢ylindrical ice core
subjected to different temperatures at the boun-
dary due to the circulation of hot water. Treating
the core in three ways: (1) an infinite cylinder;
(2) a semi-infinite cylinder; and (3) a finite cylin-
der, we have developed methods to predict how
temperature distributions are changing with time.
We wish to find out how fast the core temperature
rises, and what the risk is of melting the core. The
three methods are described in the next section.
Using them one can determine the limits on
minimum core diameter and the period of drilling
that is permissible through thermal coring
techniques without jeopardizing the interior region
of the core due to excessive penetration of heat.

Analvtcal Methods
Infinite Cylinder Approach

Assuming constant properties, no heat generation
and no dependence on axial and circumferential
direction, the appropriate form of the heat
conduction equation can be written from Ozisik
(1980).

T 13T 1 aT
tom—— e (1)

The boundary and initial conditions are

T(b,t) =T, the surface temperature;
T(r,0) =T, the initial temperature (2)

Let us nondimensionalize the governing equation
(1) and boundary and initial eonditions (2) using
the following dimensionless variables.

T,-T r «t
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Here 8 is dimensionless temperature, R the
dimensionless radial location, b the ice core radius,
t the time, and « the thermal diffusivity of ice.

Following the method outlined by Ozisik (1980) the
solution to equations (1) and (2) were derived in
Das et al. (1991} with the final result:

3 B2t JoBmR)

91(&l}=2_"e m (4)

where [.,'s are positive roots of the Besse! function
Jo(Bm)=0. The first ten roots of the Bessel function
are listed in White (1974). For roots greater than
ten, an equation is given in White. We have
incorporated these roots and the equation in a
comprehensive computer program which is listed
in Appendix 1 of Das et al. (1991).

Semi-infinite Cylinder Approach

This is a two-dimensional problem with the
governing equation given as
97T 1 4T 32T _ 1 4T

= )]
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The solution of this type of problem can be written
as the product of two one-dimensional solutions,
assuming the problem to be linear and
homogeneous (Myers, 1987). The product solution
is comprised of a semi-infinite body and the infinite
cylinder. The governing conduction equation for a
semi-infinite solid in the nondimensional form is
8262 3, (6)
822 &

[ts solution can be written as

09(Z,1)=erf ( Z ) 4]
4

These formulae have been derived in detail in Das
etal (1991).

The final result for the semi-infinite cylinder
problem appears as:

8. (R Z,1)= erf(v__) [2

Here Q4 is the dimensionless temperature in the
semi-infinite cylinder and Z=2/h is the dimension-
less axial location in the ice core. The computer
program to calculate temperatures combining the

"rmt- Jo(BmR}
8)
I(Bm)]
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infinite cylinder program with an error function
program is listed in Appendix 2 of Das et al. (1991).

Finite Cylinder Approach

The governing equation for this case is the same as
equation (5). The solution for this case can also be
obtained as the product of two one-dimensional
solutions. The product solution is dependent upon
heat conduction equations for a slab whose
thickness is equal to the height of the finite
cylinder and that of an infinite cylinder. The
dimensionless conduction equation for a slab is
32083 _ 3494

—_— 9
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[ts solution is given by
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The final result, derived in Das et al. (1991), in the
dimensionless form looks like
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Here G¢c is the dimensionless temperature in the
finite cylinder, L is its length, and Z=2L is the
dimensioniess axial location in the ice core. A
computer program combining the infinite cylinder
program and the slab program is incorporated in
Appendix 3 of Das et al. (1991).

Computational Scheme
Infinite Cylinder

The program to compute temperature distribution
in an infinite cylinder contains two subroutines
adopted from Press et al. {1986). They compute
Bessel functions of the first kind of orders zero and
one which are present in equation (4).

For extremely small values of t (e.g., 0.001, 0.005)
we recommend using a large number of terms in
the summation to eliminate oscillations in the
final values of temperatures due to the sudden
application of boundary temperature. For
example, for t=0.001 we used fifty terms and
found that oscillations were eliminated with

resuits stable to the fourth place after decimal.
This is more than the accuracy needed for practical
engineering calculations. For higher values of ¢,
ten terms are adequate. Increasing or decreasing
the number of terms can be easily accomplished in
the computer program.

Semi-infinite Cylinder

This program embodies the first program for the
iniinite cylinder and then adds to it the semi-
infinite solid solution. Therefore, it contains an
additional subroutine adopted from Press et al.
(1986) to caiculate the error function. The product
of the error function and the infinite cylinder
solution gives the temperatures for the semi-
infinite cylinder.

Finite Cylinder
The computer program for this case contains the

first program and the addition of a subsection for
calculating the solution of a slab as derived in

‘gquation (10). Temperatures for different core

lengths can be easily evaluated by simply
changing this number in the program. For the slab
solution in equation (11) our program is set to m
equal to fifty, guaranteeing extreme accuracy in
the series summation.

Results and Discussion

Computation of dimensionless temperature
profiles for infinite cylinders from equation (4) via
the first program are dispiayed in Figure 2. The
curves in this plot represent dimensionless times
varying from t=0.001 to t=2.5, which cover
practically all ranges of time periods and radii of
ice cores. Figure 2 shows that by the time ¢ reaches
one, the entire interior of the ice core has warmed
to the surface temperature.

Example 1: Consider an ice core 10cm (4 inches) in
diameter. The initial temperature Tg is -40°C and
the surface temperature Ty due to heating during
drilling operation is 0°C. We wish to find the tem-
peratureatr=2cm (0.8 inches) after 190 seconds.

Thermal diffusivity « for ice is 1.33x10-6 m?/s near
40°C (Hutter, 1983). Dimensionless time T =
«t/b2 = 0.101. Nondimensional radius R =
/b = 0.4 from Figure 2. Corresponding to this ©
and R, we read nondimensional temperature
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T T
THIN=0, =-%
Ty-Ty

=0.7 (12}

With T,=0°C and T,=- 40°C, we obtain
T(r=2cm, t=190 sec)=-28"C.

Nondimensional temperature profiles for a semi-
infinite cylinder computed from equation (8) using
the second program are shown in Figure 3. This
plot was generated for a dimensionless Z coordi-
nate of 0.5, which represents points at a vertical
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Figure 2. Dimensionless temperature profiles in
an infinite cylindrical ice core.
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Figure 3. Dimensionless temperature profiles in a
semi-infinite cylindrical ice core.

NON-OENSIONALIZED TOMPERATURE TWT'
:

distance of half the radius from the base of the
cylinder. For any other vertical position, simply
change the Z value in the error function routine of
the program to generate plots similar to Figure 2.

Example 2: Consider an ice core of 15 cm (6 inches)
diameter. The initial and surface temperatures
are the same as the previous example. Find the
temperature at a radial distance r=4.5 cm, and
vertical distance z=3.75 c¢m from the end of the
cylinder after 1080 seconds. With these values ¢
becomes 0.255, R=4.5/7.5=0.6 and
2=3.75/7.5=0.5. From Figure 3 we read
dimensionless temperature
Ts-T

THSC=65c=—"— =0.1
b 3 ]

(13)

Solving for the required temperature we obtain
T(r=4.5cm,2=3.75 cm, t=1080 sec)=—4"C.

Figure 4 presents the dimensionless temperature
profiles in a finite cylinder based on equation (11),
which has been incorporated into the third
program. The curves in Figure 4 are computed for
a nondimensional Z coordinate of 0.2. We have
selected a short cylinder with a length to radius
(L/b) aspect ratio of two to demonstrate the end
effects. For other aspect ratios and Z values, it is
simpie to change these parameters in the program.
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Figure 4. Dimensionless temperature profiles in a
finite cylindrical ice core.
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Example 3: Consider an ice core of 20 ¢m (8 inches)
diameter and of the same length. Find the temper-
atureatr = 8 cm and z = 4 cm after 375 seconds if
the initial and surface temperatures are the same
as in Example 1. From given data t is equal to

0.05. R=8/10=0.8 and Z=4/20=0.2. From
Figure 4 we read
T,-T
THFC=8pc= =0.325 (14)
s"to
which gives

T(r=8c¢m,z=4cm,t = 375 sec)=-13°C.

Limitations

Analytical results obtained in this paper are based
on assumptions of homogeneous and linear heat
conduction. In order to appiy the product solution
technique under this condition, one must assume
that all surfaces are at the same constant tempera-
ture T,. However, this is not a good assumption for
actual cases in the ice field where temperatures
vary radially and along the depth. Therefore, a
more sophisticated method is necessary to
accurately model the actual field conditions.

Recommendations

Presently, one of our graduate students is working
on finite element modeling to predict the
temperature field. This approach is extremely
versatile to handle different types of boundary
conditions, namely, convection, heat flux, and
variable temperature, which present analytical
models cannot simulate. When completed, it would
also be able to predict temperatures in the drill
casing and the ice surrounding the core, which will
enable us to determine heat loss from the drilling
fluid into the surrounding ice field.

Conclusions

From Figure 2 we conclude that an ice core under
infinite cylinder assumption becomes uniformly
warmed to its surface temperature by the time
dimensioniess time t attains a value slightly
higher than 0.50.

For the second case, shown in Figure 3, heat trans-
fer takes place for a semi-infinite cylindrical core
radially as well as axially from the base. Due to
the extra conduction from the base in the axial

L]

direction, which was not present in the case of an
infinite cylinder, we observe faster warming of the
core.

From Figure 4 we observe that the interior of the
core warms to its surface temperature by the time
dimensionless time t reaches a value of 0.5. Super-
position of temperature profiles for t=0.05 and
0.10 from these three figures clearly shows that the
finite cylinder warms fastes than the previous two
cases due to axial conduction at both ends. Note
that the axial location and the aspect ratio are
influential parameters. The trend is correct and
this last case is more appropriate for ice cores.

At present, we are using the analytical solutions
presented herein to validate the finite element
program, which is under development. Further-
more, we can use these analytical approaches,
which are much simpler than the finite element
approach, to obtain quick approximate results
when they are necessary at preliminary stages.
These analytical models are much simpler to run
and less expensive as far as computing resources
are concerned compared to a finite element
program.

References

Das, D. K., S. S. Jois, D. J. Goering and B. R. Koci.
1991. Analytical solutions for temperature
distribution in ice cores. PICO Technical Report
TR-91-3, University of Alaska Fairbanks, 28 pp.

Hutter, K. 1983. Theoretical Glaciology. D. Reidel
Publishing Company, Cordrecht, Holland,
p. 163.

Myers, G. E. 1987. Analytical Methods in
Conduction Heat Transfer. Genium Publishing
Corp., New York, pp. 139-142.

Ozisik, M. N. 1980. Heat Conduction. John Wiley
& Sons, New York, pp. 32-37, 41-43, 83-103.

Press, W. H., B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. 1986. Numerical Recipes -
The Art of Scientific Computing. Cambridge
University Press, New York, pp. 163-164,
170-174.

Rinaldi, R., B. Koci, and J. Sonderup. 1990.
Evaluation of deep ice core drilling systems.
PICO Technical Report TR-90-2, University of
Alaska Fairbanks, 34 pp.

White, F. M. 1974. Viscous Fluid Flow. McGraw-
Hill, Inc., New York, p. 143.

Mechanical Engineering News. Vol. 28, No. 3




