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1. INTRODUCTION

l The Polar Ice Coring Office (PICO), operated by the University of Alaska
Fairbanks for the National Science Foundation, is charged with the development and
operation of ice coring drills and augers for scientific research. In this capacity PICO
I has developed expertise in lightweight drills and augers and continues the research
on applying state-of-the-art materials and techniques for ice coring devices. Many
I nations now have designated programs to sample deep within the world’s ice caps,
primarily to study evidence of past climate variations and the properties and
movements of glaciers. PICO has developed a deep ice coring drill and has started a
I three-year project in the summer of 1990 to core through the Greenland ice cap.
PICO has also been tasked to plan a similar Antarctic coring program for west
Antarctica to begin in the 1992 austral summer. Many foreign nations are also
l conducting similar programs.

Common to all of the deep ice sampling devices to date has been the use of
thousands of gallons of drilling fluids in a designated pristine environment, such as
I diesel fuels, trichloroethylene, fluorocarbons, etc. PICO has conducted a number of
studies and published the results (Gosink, 1989; Gosink et al., 1989) to search for a
more environmentally acceptable fluid for use in the Greenland project. A search for
I an alternative deep ice coring drill which would be both environmentally safe and
effective is continuing at PICO.

Proenza etal. (1990) have introduced the conceptual design for a hot water-

I mechanical drill while describing shallow and deep ice coring devices developed by
PICO. The main objective is to develop such a drill that can core through thick ice
caps in far less time than it now takes, without the use of drilling fluids. We are also

l aware that new protocols are under discussion that may prohibit the use of
conventional drilling fluids or the requirement to pump them out of the wells, which

I may run into thousands of gallons, and remove them from the particular polar region.

The internal flow geometry of the hot water coring drill is shown schematically
in Figure 1. It involves hot water flow in the outer annulus that melts the ice near
the tip of cutting tools and assists in drilling at a faster rate. The cooler water
flowing through the inner annulus carries the chips up and eventually melts them.
The cooler and warmer water are circulated via hoses to the top of the hole where the
cooler water goes through a heater and is injected back through the hot water hose.

It should be recognized that this is a new technology. As Rinaldi et al. (1990)
report, although hot water drilling has been successful, a coring device of this type
has not been developed. A very important factor in this design is to use an extremely
low thermal conductivity material for the innermost cylinder surrounding the core.
Other alternatives are the use of double-wall pipe with air gap or high quality
insulation to isolate the core and to minimize the heat penetration. Before we can
design a prototype hot water-mechanical drill, we must have an opportunity to
conduct an analytical study of the fluid mechanics and heat transfer considerations

I for this concept. The present study constitutes the basis for analyzing the heat
transmission into the ice core, before the design and field test of such a drilling
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Figure 1. Internal flow geometry of the thermo-mechanical coring drill.

device. We estimate the time to design, test, refine and finalize such a device to be
two to five years.

During the first phase of the study, we have focused on one fundamental
problem. That is to determine the interior temperature distribution in a cylindrical
ice core subjected to different temperatures at the boundary due to the circulation of
hot water. Treating the core in three ways: (1) an infinite cylinder; (2) a semi-
infinite cylinder; and (3) a finite cylinder, we have developed theories to predict how
temperature distributions are changing with time. We wish to find how fast the core
is warming up, and what is the risk of melting the core. The three methods are
described in the next section. Using them one can determine the minimum core
diameter that is obtainable through thermal coring techniques without jeopardizing
the interior region of the core due to excessive penetration of heat.



2. ANALYTICALMETHODS

2.1. Infinite Cylinder Approach

Assuming constant properties, no heat generation and no dependence on z and

g, the appropriate form of the heat conduction equation can be written from Ozisik
(1980).

a2T 14T _ 1 4T
ar2 +-r—6r T x 3t (1)
The boundary and initial conditions are
T(b,t) =Ts, the surface temperature (2a)
T(r,0) =T,, the initial temperature (2b)

Figure 2 shows the geometry of the infinite cylinder. Let us nondimensionalize the
governing equation (1) and boundary and initial conditions (2a) and (2b) using the
following dimensionless variables.

=TT |
T TeT,’

R =—E; T= ;; =dimensionless time or Fourier number = Fo (3)
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T(r,t)

Figure 2. Infinite cylinder geometry.



Substituting the variables in equation (3) into (1) and simplifying, we obtain the
nondimensional form of the governing equation.

320, 1 3207 _ a0y
w2 r Tar at (4)

Similarly, by substituting the variables defined via equation (3) into equation (2a)
and (2b), we get the nondimensionalized boundary and initial conditions.

O at surface where R =1 is zero, because T=T, (5a)
Initial ©1 at time t =0 (v=0) is ©1; =1, because T=T, (5b)

The solution of equation (4) with initial and boundary conditions prescribed by
equations (5a) and (5b) is presented as equation (3-68) in Ozisik (1980).

201 3 -Bmzc Jo(BmR)
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Recognize from the dimensionless conduction equation (4) that « has been embedded
in v after nondimensionalization. Boundary and initial conditions from equations
(5a) and (5b) show that @1; and Ry, are equal to unity. Therefore, the final result
becomes
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01RD=2 2 oBmt  _ Jo(BmR)

BmJl(ﬁm) )

where By’s are positive roots of the Bessel function Jo(fm)=0. The first ten roots of
the Bessel function are listed in White (1972). For roots greater than ten, an
equation is given in White. We have included these roots and the equation in the
computer program which is listed in Appendix 1 of this report.

2.2. Semi-infinite Cylinder Approach
This is a two-dimensional problem with the governing equation given as
a2T 1 gT a2T

1
+ = + ==
ar2 r or 972 «

aT
at

(8)

The solution of this type of problem can be written as the product of two one-
dimensional solutions, provided the problem is linear and homogeneous (Myers,
1987). The product solution appears as

T(r,z,t) = Ty(r,t) Ta(z,t) 9)



where Tj(r,t) is the solution of the infinite cylinder approach just illustrated in
Section 2.1 and Ta(z,t) is the solution of the heat conduction problem in a semi-

infinite solid. Figure 3 displays the geometry of a semi-infinite cylinder. In the
dimensionless form, the product solution will be

0sc(R,Z,7)=01(R,7) O2(Z,1) (10)

©1(R,7) is already available from equation (7). ©®9(Z,1) can be found by the following
procedure.

The equation and its corresponding boundary and initial conditions for the
semi-infinite solid are

32T 1 4T .

22 % ot In 0sz2<w (11)
T(o,t) =Ts, the surface temperature for time t >0 (12a)
T(z,0) =T,, the initial temperature in osz<w (12b)

Let us nondimensionalize the initial temperature in equations (11), (12a) and (12b)
using the following variables.

T(r,z,t)

- — . —

Figure 3. Semi-infinite eylinder geometry.
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We have used the same length for nondimensionalizing as in equation (3), since semi-

infinite body has no fixed length dimension. Substituting terms of equation (13) into
(11) and simplifying, we get

209 _ 409

N ondimensionhlized boundary and initial conditions from equations (12a) and (12b)
are

O2 at surface where Z =0 is zero, because T =T, (15a)
Initial @2 at time t=0 (v=0) is @2; =1, because T=T, (15b)

The solution of equation (14) subject to the conditions given by equations (15a) and
(15b) is given in Ozisik (1980) as equation 2-62. In the dimensionless form we can
write it as

Oo(Z,T) =erf (74%—) (16)

Notice that the constant initial temperature T, that appears as the denominator in
Ozisik’s solution becomes @g; and goes to unity after nondimensionalization and so

does «. Now combine equations (16) and (7) to form the final solution of the semi-
infinite cylinder problem.

z Bt Jo(BmR)
Osc(R, Z,1) = o) —ottmV) 17
stk Zo=er o) [ ﬁmJl(pm>] o

The computer program to calculate temperatures combining the infinite cylinder
program with an error function program is listed in Appendix 2 of this report.

2.3. Finite Cylinder Approach

Figure 4 illustrates the geometry of a finite cylinder. The governing equation
for this case is the same as equation (8). the solution for this case can also be obtained
as the product of two one-dimensional solutions illustrated earlier in Section 2.2. The
problem must be linear and homogeneous. The product solution is

T(r,z,t) =T1(r,t) T3(z,t) (18)



where Ti(r,t) is the solution of the infinite cylinder approach already completed in
Section 2.1 and T3(z,t) is the solution of the heat conduction through a slab whose
thickness is equal to the height of the cylinder. In the dimensionless form the
solution looks like

GFC(Ryth)ZGI(R)t) 93(Zyt3) (19)

©1(R,1) is available from equation (7). Let us obtain the solution ©3(Z,t3). The
mathematical formulation for a slab problem can be written as

a2T _ 1 4T .

e e ino<zsL,t>0 (20)
Bounday conditions: T=Tgatz=0andz=Lfort>0 (21a)
Initial condition: T=T,fort=0 ino=szsL (21b)

Nondimensionalize equations (20), (21a) and (21b) using the following variables.
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Figure 4. Finite cylinder geometry.



Substituting these nondimensional variables into equation (20) we get

0203 _ 903
aZ2 ata

(23)

Boundary conditions and initial condition from equations (21a) and (21b), when
nondimensionalized, yield

I ®3=0 atsurfacesZ=0and Z=1, because T=T (24a)
l Initial @3 at time t=0(t3=0) is @3;=1, because T=Ty ino=sZ=<1 (24bj

The solution to equation (23) along with conditions (24a) and (24b) is obtained
from Ozisik (1980) [Table 2-2, Case #9, and equation (2-36)]. Notice that for this
nondimensional case =, L and the initial temperature ©3; are all equal to one.

l where B’s are the roots of sinfiy =0 or given as fpy=mn,m=1,2,3,..
Completing the integration in equation (25), the final result from Ozisik (1985)

x 2
03(Z;13)=2 € PP (2) sinfZ ['sinpmZ’ dZ’ (25)
0

is:

m

I @3(Z,t3) = 2 l e (mm)2 Ysin(mnZ) (26)
I m==135. m

Notice that the dimensionless time t3 can be expressed in terms of t by the relation
l t3=1(b/L)2. With this substitution the final result, as a product of two solutions,
becomes

Jo(BmR) ] [4 Y o~ (mm?2 t(b/L)2

© 2
G')I-‘C(R,Z,t):[22_:‘19‘{5111t I = 135 = m(ng)] 27

A computer program combining the infinite cylinder program and the slab program
is incorporated in Appendix 3.



3. COMPUTATIONAL SCHEME

3.1 Infinite Cylinder

The first program in the appendix computes temperature distribution in an
infinite cylinder. Ten roots of Bessel function from White (1974) have been
substituted into the program. Roots greater than ten in the program are evaluated
by an equation also from White. Two subroutines adopted from Press et al. (1986)
compute Bessel functions of the first kind of order zero and one which are present in
equation (7).

The results given in Appendix 1 as an example, are for a dimensionless time
t=0.05. Other time periods were calculated simply changing the value of t in the
program. For extremely small values of t (e.g., 0.001, 0.005) we recommend using a
large number of terms, say about a hundred, in the summation to eliminate
oscillations in the final values of temperatures. For example, for t=0.001 we used
fifty terms, and found that oscillations were eliminated up to the fourth place after
decimal. This is more than the accuracy needed for practical engineering
calculations. For higher values of t, ten terms are adequate. Increasing or
decreasing the number of terms can be easily accomplished by simply changing the
number in the do-loop of the program.

3.2 Semi-infinite Cylinder

This is presented as the second program in the appendix. This program
embodies the first program for the infinite cylinder, and then adds on the semi-
infinite solid solution to it. Therefore, we have included an additional subroutine to
calculate the error function adopted from Press et al. (1986). The product of the error
function and the infinite cylinder solution gives the temperatures for semi-infinite
cylinder. The sample run given in the appendix is for a nondimensional height
Z=0.5, meaning the point is at a height equal to half the radius of the cylinder.
Temperatures at various heights can be computed by simply changing the input
values of Z in the program. A sample output shown in Appendix 2 is for t=0.25,

3.3 Finite Cylinder

The computer program for this case is presented as Program-3 in Appendix 3. It
contains Program-1 as before, and then adds on a subsection for calculating the
solution of a slab as derived in equation (26). The sample run given in the appendix is
for a nondimensional height Z=0.5, which represents a plane at mid-height of the
finite cylinder. Temperatures at other heights can be easily evaluated by simply
changing this number in the program. For the slab solution we have taken fifty
terms in the series summation. The sample output from this program in Appendix 3
is forv=0.1.




4. RESULTS & DISCUSSION

Computation of dimensionless temperature profiles for infinite cylinders from
equation (7) via Program-1 of the appendix are displayed in Figure 5. The curves in
this plot represent dimensionless times varying from t=0.001 to t1=2.5, which cover
practically all ranges of time periods and radii of ice cores. Figure 5 shows that by the
time t reaches one, the entire interior of the ice core has been heated up the surface
temperature. Beyond that no further changes in the temperature occur. The top two
curves representing very small time t=0.001 and t=0.005 must be computed using a
large number of terms in the series in equation (7), otherwise the final values. may
exhibit an oscillatory behavior.

Example 1: Consider an ice core 10 cm (4 inches) in diameter. The initial
temperature T is -40°C and the surface temperature Ts due to heating during drilling
operation is 0°C. We wish to find temperature at r=2 cm (5 inches) after 190 seconds.

Thermal diffusivity « for ice is 1.33x10-6 m2/s at -55°C (Hutter, 1983).

Dimensionless time t=x«t/b2=0.101. Nondimensional radius R=r/b=0.4 from
Figure 5. Corresponding to this t and R we read nondimensional temperature

Te-T

THIN =

=0.7; with Tg=0°C and T,=-40°C
We obtain T(r=2cm, t=190 sec)=-28°C.

Nondimensional temperature profiles for a semi-infinite cylinder computed
from equation (17) using Program-2 of the appendix are shown in Figure 6. This plot
was generated for a dimensionless Z coordinate of 0.5 which represents points at a
vertical distance of half the radius from the base of the cylinder. For any other
vertical position simply change the Z value in the error function section of program-2,
and generate plots similar to Figure 6.

Example 2: Consider an ice core of 15 cm (6 inches) diameter. The initial and
surface temperatures are the same as the previous example. Find the temperature at
a radial distance r=4.5 cm, and vertical distance z=7.5 cm from the end of the
cylinder after 1080 seconds. With these values t becomes 0.255, R=4.5/7.5=0.6 and
Z=17.5/15=0.5. From Figure 6 we read dimensionless temperature

T _
THSC= e_Ts T =02

Solving for the required temperature we obtain

T(r=4.5e¢m,z=7.5cm, t=1080 sec)=-8°C.

10
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Figure 7 presents the dimensionless temperature profiles in a finite cylinder
based on equation (27) which has been incorporated in Program-3 of the appendix.
The curves in Figure 7 are computed for a nondimensional Z coordinate of 0.5 which
represents points located exactly at half the height of the cylinder. For points on a
plane at any other vertical distance, simply change the Z value in the slab calculation
section of Program-3.

Example 3: Consider an ice core of 20 cm (8 inches) diameter and 3 m (9.84 ft)
length. Find the temperature at r = 8 cm and z = 1.5 m after 375 seconds if the
initial and surface temperatures are the same as in Example 1. From given data t is
equal to 0.05. R=8/10=0.8and Z=1.5/3.0=0.5. From Figure 7 we read

Ts-T

THFC = T T,

=0.40

which gives T(r=8cm,z=1.5m, t=375 sec)=-16°C.

5. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from this study.

From Figure 5 we conclude that an ice core under infinite cylinder assumption
becomes uniformly warmed to the surface temperature by the time the dimensionless
time t attains a value slightly higher than 0.05. Beyond this time period the excess
temperature between the surface and the interior goes to zero and no further heat
conduction takes place inside the core.

For the second case the heat transfer takes place for a semi-infinite cylindrical
core radially as well as axially from the base. The base due to the extra conduction in
the axial direction which was not present in case of an infinite cylinder, we observe
faster warming of the core in Figure 6 in comparison with Figure 5. From Figure 6
we note that the entire core gets warmed up to the surface temperature by the time
the dimensionless time t becomes about 0.5.

From Figure 7 we observe that the interior of the core gets warmed to the
surface temperature by the time the dimensionless time t reaches a value slightly
higher that 0.25. Comparisons of temperature profiles at various times in the figure
with Figures 5 and 6 clearly show that the cylinder is warming faster than the
previous two cases.

Analytical results obtained in this report are based on homogeneous heat
conduction problems. In order to apply the product solution technique under this
condition, one must assume that all surfaces are at the same constant temperature
Ts. However, this is not a good assumption for actual cases in the ice field where
temperatures vary radially and along the depth. Therefore a more sophisticated
method is necessary to accurately model the actual field conditions.

We recommend that finite element modelling be undertaken to predict the
temperature field. This approach should be made versatile to handle different types

13
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of boundary conditions, namely; 1. convection, 2. heat flux, 3. variable temperature
which the present analytical models can not simulate. It should also be able to
predict temperatures in the drill casing and the ice surrounding the core which will
enable us to determine the heat loss from the drilling fluid into the surrounding ice
field.

We shall use the analytical solutions developed here to validate the finite
element program during its evolution. Furthermore, we can use these analytical
approaches which are much simpler than the finite element approach to obtain quick
approximate results when they are necessary at preliminary stages. These
analytical models are much simpler to run and less expensive as far as computing
resources are concerned compared to a finite element program. '

15
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APPENDIX 1

PROGRAM-1 FOR THE INFINITE CYLINDER THEORY
AND A SAMPLE OUTPUT

17



@]

O OO0O0cO0O0On0n
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1000
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200

PROGRAM-1

PROGRAM TO CALCULATE TEMPERATURES IN AN INFINITE CYLINDER
DIMENSION BM(50), THIN(50)

OPEN(UNIT=10, FILE="THIN.OUT’, STATUS="NEW’)

EXPLANATION OF INPUT PARAMETERS

B = RADIUS AT THE SURFACE

BO = NON-DIMENSIONALIZED RADIUS AT SURFACE

BM = BETA WITH SUBSCRIPT M

R = VARYING RADIUS

TAU = NON-DIMENSIONALIZED TIME = ALPHA*TIME/B**2

THIN = NON-DIMENSIONALIZED TEMP FOR INFINITE CYLINDER

- BO =10

HERE ARE THE VALUES FOR BETA
BM(1) =2.4048

BM(2) =53201

BM(3) = 8.6537

BM(4) = 11.7915

BM(5) = 14.9309

BM(6) =18.0711

BM(7) = 212116

BM(8) = 243525

BM(9) = 274935

BM(10) = 30.6346

DO 10] = 11,50

BM(]) = REAL(4*}-1)*3.1416/4.0
CONTINUE

TAU = 0.05

R= 00

SUM=0.0

DO 200 K = 1,50
W = BM(K)*R
Z = BM(K)»*BO
C = (EXP(-BM(K)*BM(Ky*TAU)*(BESSJO(W))/ (Z*BESS]1(Z))
WRITE(10,*)XC,BM(K),BESS]JO(W),BESS]1(Z)
SUM = SUM + C
ALL PRINT STATEMENTS FOR VIEWING INTERMEDIATE
RESULTS ON THE SCREEN
PRINT*,SUM
THIN(K) = 2.0*SUM
PRINT *THIN =',R,THIN(K)
CONTINUE
WRITE(10,")R, THIN(50)
R=R+0.1
IF (R.LE.1.1) GO TO 1000
STOP
END
FUNCTION BESSJO(X)
RETURNS THE BESSEL FUNCTION jO(X) FOR ANY REAL X
REAL*8 Y,P1,P2,P3,P4,P5,

Q1,Q2,Q3,Q4,Q5,

R1,R2,R3,R4,R5,R6,

$1,52,53,54,55,56
DATA 1,P2,P3,P4,P5/

1.D0,-.1098628627D-2,

i8
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.2734510407D-4,
-.2073370639D-5,.2093887211D-6/,
Q1,Q2,Q3,Q4,Q5/-.1562499995D-1,
.1430488765D-3,-.6911147651D-5,
.7621095161D-6,-.934945152D-7/

DATA R1,R2,R3,R4,R5,R6

/57568490574.D0,
-13362590354.D0,651619640.7D0,
-11214424.18D0,77392.33017D0,-184.9052456 D0/,

$1,52,53,54,55,56/57568490411.D0,1029532985.D0,
9494680.718D0,59272.64853D0,267.8532712D0,1.D0/

[F(ABS(X).LT.8.)THEN

Y=X**2

BESSJO=(RI1+Y*(R2+Y*R3+Y*(R4+Y*(R5+Y*R6)))))

/(S1+YHS2+Y*(S3+Y*(Sd4+Y*(S5+Y*S6)))))

ELSE

AX=ABS(X}

Z=8./AX

Y=2Z**2

XX=AX-.785398164

BESSJ0=SQRT(.636619772/ AX)

HCOSCOO*P1+Y*P2+YHP3+Y*(P4+Y

*PSN-Z*SINOXO(QI+YH(Q2+Y*(Q3+YHQ4+Y*Q5))))

ENDIF

RETURN

END

FUNCTION BESSJ1(X)
RETURNS THE BESSEL FUNCTION J1(X) FOR ANY REAL X
REAL"8 Y,P1,P2,P3,P4,75,
Q1,Q2,Q3,Q4,05,
R1,R2,R3,R4,R5,R6,
51,52,53,54,55,56
DATA R1,R2,R3,R4,R5,R6/72362614232.D0,
-7895059235.D0,242396853.1D0,
-2972611.439D0,15704.48260D0,
-30.16036606D0/,

51,52,53,54,55,56/144725228442.D9,
2300535178.D0,
18583304.74D0,99447.43394 D0,
376.9991397D0,1.D0/

DATA P1,P2,P3,P4,P5/1.D0,.183105D-2,
-.3516396496D4,.2457520174D-5,
-.240337019D-6/,Q1,Q2,Q3,Q4,Q5/
.04687499995D0,-.2002690873D-3,
.8449199096D-5,-.88228987D-6,.105787412D-6/
IF(ABS(X).LT.8.)THEN

Y=X*"2

BESSJ1=X*(R1+Y*(R2+Y*
(R3+Y*(R4+Y*(R5+Y*R6)))
/(S1+YM(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6))))
ELSE
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AX=ABS(X)

Z2=8./AX

Y=2Z**2

XX=AX-2.356194491

BESS]1=5QRT(.636619772/AX)

*(COSXX*(PI+Y*(P2+Y*(P2+Y*Pi+Y
*PEMN-Z*SINIXX)*(Q1+Y*

(Q2+Y*(Q3+Y*(Q4+Y* Q5

*SIGN(1.,X)

ENDIF

RETURN

END

OUTPUT FOR TAU = 0.05

R

THIN

0.0C00000E+00  0.9871099

0.1000000
0.2000000
0.3000000
0.4000000
05000000
0.6000000
0.7000000
0.8000001
0.9000001

1.000000

0.9837919
0.9724172
0.9487334
0.9059071
0.8353553
0.7300138
0.5856681
0.4062860
0.2044779

2.3027134E-04
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PROGRAM-2
PROGRAM TO CALCULATE TEMPERATURES IN AN SEMI-INFINITE CYLINDER
DIMENSION BM(50), THIN(50), THSC(50)
OPEN(UNIT=10, FILE="THSC.OUT’, STATUS='NEW’)
EXPLANATION OF INPUT PARAMETERS
B = RADIUS AT THE SURFACE
BO = NON-DIMENSIONALIZED RADIUS AT THE SURFACE
BM = BETA WITH SUBSCRIPT M
ZCAP = NON-DIMENSIONALIZED LENGTH = Z/B
TAU = NON-DIMENSIONALIZED TIME = ALPHA*TIME/B**2
THSC = NON-DIMENSIONALIZED TEMP FOR SEMI-INFINITE CYLINDER

- THIN = NON-DIMENSIONALIZED TEMP FOR INFINITE CYLINDER

BO = 1.0

HERE ARE THE VALUES OF BETA
BM(1) = 2.4048

BM(2) = 55201

BM(3) = 8.6537

BM(4) = 11.7915

BM(5) = 14.9309

BM(6) = 18.0711

BM(7) = 21.2116

BM(8) = 24.3525

BM(9) = 27.4935

BM(10) =30.6346

DO10J = 1150 B
BM(]) = REAL(4*]-1)*3.1416/4.0
CONTINUE

TAU = (.25

R=00

SUM =0.0

DO 200K = 1,50

W = BM(K)*R

U = BM(K)*BO

C = EXP(-BM(K)*BM(K)*TAU)*(BESSJO(W))/ (U*BESS]1(U))
ALL PRINT STATEMENTS FOR VIEWING THE INTERMEDIATE
RESULTS ON THE SCREEN
PRINT* SUM

THIN(K) = 2.0*SUM

ZCAP = 0.5
PRINT* THIN(K)

CALCULATION OF ERROR FUNCTION
HERE Z REPRESENTS THE ARGUMENT OF THE
COMPLIMENTARY ERROR FUNCTION

P=ZCAP/(SQRT(4.0*TAU))

PRINT*,P

Z=ABS(P)

Ti=1./(1.4+05*2)

ERFCC=TI*EXP(-Z*Z-1.26551223+
T1*(1.00002368+T1*(.37409196+
T1*(.09678418+T1*(-.18628806+
T1*(.27886807+T1*(-1.13520398+
T1*(1.48851587+T1*(-.82215223+T1*.17087277))))))))
[F (P.LT.0.) ERFCC=2.-ERFCC
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ERF= 1-(ERFCC)

PRINT *ERF

CALCULATION OF TEMP
THSC(K)=ERF*THIN(K)

PRINT *,"THSC=",R, THIN(K), THSC(K)
CONTINUE

WRITE(10,*)R, THSC(50)

R=R+{.1

IF(R.LE.1.1) GO TO 1000

STOP

+ END

FUNCTION BESSJ0(X)
RETURNS THE BESSEL FUNCTION J0(X) FOR ANY REAL X
REAL*8 Y,P1,P2,P3,P4,P5,
Q1,Q2,Q3,Q4.Q5,
R1,R2,R3,R4,R5,R6,
$1,52,53,54,55,56
DATA P1,P2,P3,P4,P5/
1.D0,-.1098628627D-2,
.2734510407D+4,
-.2073370639D-5,.2093887211D-6/,
Q1,02,Q3,Q4,Q5/-.1562499995D-1 ,
.1430488765D-3,-.6911147651D-5,
.7621095161D-6,-.934945152D-7/
DATA R1,R2,R3,R4,R5,R6
/57568490574.D0,
-13362590354.D0,651619640.7D0,
-11214424.1 8D0,77392.33017D0,-184.9052456 D0/,
51,52,53,54,55,56/57568490411.D0,1029532985.D0,
9494680.71 8D0,59272.64853D0,267.8532712D0,1.D0/
[F(ABS(X).LT.8.)THEN
Y=X**2
BESSJO=(R1+Y*(R2+Y*(R3+Y*(R4+Y*(R5+Y*R6)))))
/(ST+Y*(S2+Y*(S3+Y*(S4+Y*(S5+Y*S6))))
ELSE
AX=ABS(X)
Z=8./AX
Y=Z**2
XX=AX-.785398164
BESSJ0=SQRT(.636619772/ AX)
*COSXXO*MPL+Y* P2+ Y*(P3+Y*(P4+Y
*PSNN-Z*SINOOOM Q1+ Y Q2+ YHQ3+YHQ4+Y*Q5))))
ENDIF
RETURN
END

FUNCTION BESSJ1(X)
RETURNS THE BESSEL FUNCTION J1(X) FOR ANY REAL X
REAL*8 Y,P1,P2,P3,P4,P5,
Q1,Q2,Q3,Q4,Q5,
R1,R2,R3,R4,R5,R6,
$1,52,53,54,55,56
DATA R1,R2,R3,R4,R5,R6/72362614232.D0,

23



-*-----—----

» L4 » v

* L L L

* ¥ & »

-7895059235.D0,242396853.1D0,
-2972611.439D0.15704.48260D0,
-30.16036606D0/,

51,52,53,54.55,56/144725228442.D0,

2300535178.D0,

18583304.74D0.99447.43394 D0,

376.9991397D0,1.D0/

DATA P1,P2,P3,P4,P5/1.D0,.183105D-2,

-.3516396496D+4,.2457520174D-5,

-.240337019D-6/,Q1,Q2,Q3,Q4,Q5/

.04687499995D0,-.2002690873D-3,

.8449199096D-5,-.88228987D-6,.105787412D-6/

[F(ABS(X).LT.8.)THEN

Y=X**2

BESSJ1=X*(R1+Y*(R2+Y*

(R3+Y*(R4+Y*(RS5+Y*Ré)))))

/(S1+Y*(S2+YYS3+Y*(S4+Y*S5+Y*S6))))

ELSE

AX=ABS(X)

Z=8./AX

Y=Z**2

XX=AX-2.356194491

BESSJ1=SQRT(.636619772/AX)

HCOSXX)*(P1+Y*(P2+ Y*(P3+Y*(P4+Y
*PSIN-Z*SIN(XX)*(Q1+Y*

(Q2+Y*(Q3+Y*(Q4+Y*Q5))))

*SIGN(1.,X)

ENDIF

RETURN

END

OUTPUT FOR TAU = 0.25

R

THSC

0.0C00000E+00 0.1961487

0.1000000 0.1933395

0.2000000 0.1850296

03000000 0.1715672

(.4000000 0.1535167

0.5000000 0.1316355

0.6000000 0.1068408
0.7000000 8.0169059E-02
0.8000001 5.2727610E-02

1.000000

—e— (900000t — — 2564227802

2.5864151E-06 24
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PROGRAM-3

PROGRAM TO CALCULATE TEMPERATURES IN A FINITE CYLINDER
DIMENSION BM(50), THIN(50), THSL(50)

OPEN(UNIT=10, FILE="THFC.QUT", STATUS="NEW")
EXPLANATION OF INPUT PARAMETERS

B = RADIUS AT THE SURFACE

BO = NON-DIMENSIONALIZED RADIUS AT THE SURFACE

BM = BETA WITH SUBSCRIPT M

CL = LENGTH OF THE CYLINDER

R = VARYING RADIUS

TAU = NON-DIMENSIONALIZED TIME = ALPHA*TIME/B**2
TAU3 = NON-DIMENSIONALIZED TIME = ALPHA*TIME/CL**2

THIN = NON-DIMENSIONALIZED TEMP OF THE INFINITE CYLINDER

THSL = NON-DIMENSIONALIZED TEMP OF SLAB

THFC = NON-DIMENSIONALIZED TEMP OF FINITE CYLINDER
Z = NON-DIMENSIONALIZED LENCTH = z/CL

BO = 1.0

HERE ARE THE VALUES FOR BETA

BM(1) =2.4048

BM(2) =5.5201

BM(3) = 8.6537

BM(4) = 11.7915

BM(5) = 14.9309

BM(6) = 18.0711

BM(7) = 21.2116

BM(8) = 24.3525

BM(9) = 27.4935

BM(10) = 30.6346

DO 10 ] = 11,50

BM(]) = REAL (4*]-1)*3.1416/4.0
CONTINUE

TAU = 0.10

CALCULATION FOR TEMPERATURE IN A SLAB
SUM1=0.0

Z =205

DO 50 M =1,50,2

S=M*3.1416

B =01

CL =30

TAU3 = (B/CL*2*TAU

C1 =(1.0/MMEXP(«(S*S)* TAU3M*SIN(5*2))
SUM1 = SUM1+C1

ALL PRINT STATEMENTS ARE FOR VIEWING THE INTERMEDIATE
RESULTS ON SCREEN

PRINT*,SUM1

WRITE(10,:)SUM]1
THSL(M)=(4.0/3.1416)*SUM
THS=THSL(M)

CONTINUE

DO 111 = 0,10

R = 0.1

SUM=0.0

DO 200 K = 1,50

W = BM(K)'R
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U = BM(K)*BO

C = EXPG-BMKY*BM{KY TAUTBESSIOOV))/(UBESS]1(L))

WRITE(10,)C,BM(K),BESSII(W), BESSIT(L)
SUM = SUM + C

PRINT*,SUM

THIN(K) = 2.0*SUMI
THIN=THIN(K)

CONTINUE

PRINT *,/THIN =".R, THIN(K})
THFC=THIN*THS
WRITE(10,")R, THIN, THS THFC
WRITE(10,*)R, THFC
CONTINUE

STOP

END

FUNCTION BESS]JO(X)

RETURNS THE BESSEL FUNCTION 10(X) FOR ANY REAL X

REAL*8 Y,P1,P2,°3,P4,P5,
Q1,02,03,Q4,Q5,
R1,R2,R3,R4,R5,R6,
$1,52,53,54,55,56
DATA P1,P2,P3,P4,P5/
1.D0,-.1098628627D-2,
.2734510407D-4,
-.2073370639D-5,.2093887211D-6/,
Q1,02,03,04,Q5/-.1562499995D-1,
.1430488765D-3,-.6911147651D-5,
.7621095161D-6,-.934945152D-7/
DATA R1,R2,R3,R4,R5,R6
/57568490574.D0,
-13362590354.D0,651619640.7D0),
-11214424.18D0,77392.33017D0,-184.9052456D0/,
$1,52,53,54,55,56/57563490411.D0,1029532985.D0),
9494680.718D0,59272.648533D10),267.8532712D0,1.D0/
[F(ABS(X).LT.8)THEN
Y=X**2
BESSJO=(R1+Y*{(R2+Y*R3+YHR4+YV*(R5+Y*R6)MIMN
J(ST+Y*(S2+YH(S3+Y*(54+Y*(S5+Y*56)))))
ELSE
AX=ABS(X)
Z=8./AX
Y=2*2
XX=AX-.785398164
BESSJ0=SQRT(.636619772/ AX)
HCOSXXPPI+Y* P2+ Y HP3+Y(P4+Y
*PEIN-ZHSINCXXO)MQT+Y Q2+ Y Q3+ Y HQI+Y QNN
ENDIF
RETURN
END

FUNCTION BESSJ1(X)

RETURNS THE BESSEL FUNCTION J1(X) FOR ANY REAL X

REAL*8 Y,P1,P2,P3,P4,P5,
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Q1,Q2,Q3,Q4,Q5,
R1,R2,R3,R4,R5,R6,
$1,52,53,54,55,56
DATA R1,R2,R3,R4,R5,R6/72362614232.14),
-7895059235.D0,242396853.1 D4
-2972611.439D0,15704.48260D0,
-30.16036606D0/,

$1,52,53,54,55,56/144725228442.D0).

2300535178.D0,

18583304.74D0,99447 43394100,

376.9991397D0,1.D0/

DATA P1,P2,P3,P4,P5/1.D0,.183105D-2.

-.3516396496D-4,.2457520174D-5,

-.240337019D-6/,Q1,Q2,Q3,Q4,Q5/

.04687499995D0,-.2002690873D-3,

.8449199096D-5,-.88228987D-6,. 105757412D-6/

[F(ABS(X).LT.8)THEN

Y=X**2

BESSJ1=X*(R1+Y*(R2+Y*

(R3+Y*(RE+Y*(RS+Y*Ré6M))

JST+YHS2+Y*(S3+ Y (S4+YH(S5+Y 5000

ELSE

AX=ABS(X)

2=8./AX

Y=2*"2

XX=AX-2.356194491

BESS]1=SQRT(.636619772/AX)

HCOSXXPPI+Y*(P2+Y*(P3+ Y (P4+Y
*PSIM-Z*SINXXO)*(QT+Y*

(Q2+YHQ3+Y*(Q4+Y* Q5NN

*SIGN(1.,X)

ENDIF

RETURN

END

OUTPUT FOR TAU = 0.10

R

THFC

0.0000000E+0C  0.8490568

0.1000000
0.2000000
0.3000000
0.4000000
05000000
0.6000000
0.7000000
0.8000000
0.9000000

1.000000

0.8398013
0.8117947
0.7644722
0.6973760
0.6107559
0.5061774
03869560
0.2582564
0.1267717

1.6550317E-05

28






