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Abstract: By shaping the leaf spring according to a forth
order parabola, a uniform load distribution is obtained
along the line of contact with the ice. For this leaf spring
geometri, the radial load, the supporting force and the
maximum bending moment in the spring are calculated.

Introduction

The leaf spring antitorque device is an improvement
over most other designs, due to the following
qualities:

a. Mechanically, it is very simple consisting of
three pre-bent leaf springs, each supported at the
ends by hinges.

b. The rise of the springs and thereby the pressure
exerted on the hole wall, may easily be adjusted
by changing the distance between the hinges.

c. The springs are flexible, allowing easy passage
of e.g. ice layers or other irregularities at the
wall of the drill hole.

The method of rational design of antitorque leaf

springs presented here, was developed for the

Danish  light-weight drill (Johnsen, 1980).

Experience with this drill and the Danish deep drill

(Gundestrup, 1982) has lead to a satisfactory design

procedure.

Leaf spring geometry

Figure 1 shows a sketch of the spring. In the figure,

r = radius of the hole,

b + e = radial distance of the spring supports
(hinges) from the hole wall,

e = eccentricity,

2k = distance between the spring
(assumed to be fixed).

supports

The undeformed spring consists of three sections:
two rectilinear ones adjacent to the supports of
length c (projected length a, see figure 1), and a
curved section with chord length 21 and rise f| (thick
full curve in fig.1).

The calculations are simplified, if the two points
of transition between the spring sections (points C
and D in figure 1) coincide with the hypothetical
points of intersection between the undeflected
spring and the hole wall. We assume this to be the
case. The total rise of the spring will accordingly be
f, + b.
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Figure 1. Leaf spring geometry



When the spring is deflected by being pressed
against the hole wall, the curved section is
straightened out and the rectilinear sections are bent
(thick broken line in figure 1). The transition points
C and D will be displaced a short distance along the
hole wall in the direction towards the supports.
Assuming the ratio f,/(2l) <1, the displacements are
insignificant and are consequently ignored. This
means, that the section of the deflected spring
contacting the wall is assumed to have the length 2],
and that the chord lengths of the curved sections of
the deflected spring are equal to c.

Design principles and equations

The following rules are used in the design of the leaf

springs:

1. The load distribution should be uniform along
the section of the deflected spring, that is in
contact with the wall.

2. The transitions between the curved and
rectilinear sections of the spring should be
smooth, both in the deflected and undeflected
states.

3. The length of the spring is preserved during
deflection.

4. The deflections are calculated using ordinary
beam theory.

The highest rotation resistance of the antitorque

system is obtained, if the distribution of the load p

is uniform along the section of the spring, that is in

contact with the hole wall. Introducing an x-axis
along the wall with origin at point C (see figure 1), it
follows from beam theory, that the corresponding
bending moment M should be distributed according
to the equation (Hartog, 1949 p.34)

M=-Ypx2+plx +M,, 1)

where M, is the bending moment at point C (which
for reasons of symmetry is equal to that at point D).
M_ may be expressed in terms of the transverse and
longitudinal components P and N of the supporting
force (see figure 1):

M,.=Pa-N(b +e), @
where
P=pl. 3)

Further application of beam theory leads to the
following equation for the deflections of the
originally curved part of the spring

f/k =P+ (1/24x*4-1/6x*3 + 13x*) + yIM2 (x*-V2x*2), (4)
where

v=l/k, x* =x/1, P* =Pk¥/(El), M? =M k/(E]),

E = Youngs Modulu and I = 1/12wt? is the

moment of inertia of the spring cross section (w =
width and t = thickness).

The expression for small deflections of a straight
beam has been applied, even though the actual
deflections are not small and the undeformed
‘beam’ is not straight. However application of a
more correct - and correspondingly more
complicated - theory is not likely to change the
results significantly.

Eq. (4) ensures, that the deflections of points C
and D are zero, in accordance with a previous
assumption. Since section CD is deflected into a
straight line, the shape of the curved central section
of the undeflected spring is exactly given by eq. (4).

To ensure a smooth transition between the curved
and the rectilinear sections of the undeflected
spring, the slope of the curved spring section df/dx
at points C and D should be equal to +b/a.

This imposes the following condition on P and
M.:

M? =b*/[y(1-y)]-V3yP*, 5)

where b* =b/k, and P*,M? and v have been given
above. Combining egs. (2) and (5), yields

N* =P*(1-%7)/(b* +e*)-b*/[(b* +e*)y(1-y)], (6)
where
N* =Nk2/(El) and e* =e/k.
Next consider section AC, along which an s-axis is
introduced with origin at point A.

According to the theory of a beam subject to
normal forces, the differential equation for the

deflections of section AC will read (Hartog, 1949,
pp.188-189)

Eld?f/ds? + f(Pb/c + Na/c) = Ne-(M, + Ne)s/c,

which has the solution

f/k = f sin(ws/c) + f cos(ws/c) + a,+a,s/c, )]
where

w?=[P*b* + N* (1)l {172 +b72, ®
a,=N*e*{w/[P*b* +N*(1-y)]}?, &)
a;=-(M? +N*e*){w/[P*b* + N*(1-9)1}?, (10
f.=-a, 11
f,=-(a, +ay)/sin(w) + acos(w), (12)

Assuming k, b and e to be known, it appears that
the deflection curve eq. (7) is dependent on the
unknown quantities v,P*,N* and M? However,
through egs. (5) and (6), the number of unknowns
may be reduced to two, e.g. v and P*. In order to
determine these unknowns, two additional
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equations must be set up: One expressing, that the
slope of the deflection curve given by eq. (7) equals
b*/(1-y) for s ¢, the other expressing that the
length of the spring is preserved. The two equations
read:

wf cos(w)-f sin(w) +a,-b*/(1-p)J(1-y)2+b*2=0,  (13)

and

: 1
S T+ (df/ds)ids +1= S [+ @df7dx)2dx+¢,  (14)
0 0

Equations (13) and (14) are two transcendental
equations in y and P*, that must be solved by
numerical methods. The solutions are shown in
figure 2 a and b for various values of the
dimensionless parameters b/k and e/k.

In figure 2 are also plotted additional quantities,
that are usefull in the leaf spring design. A practical
design schema is given below.

The main characteristic lengths k, b and e of the
leaf spring geometry are constrained by practical
considerations. Next the dimensionless force N*
and the maximum bending moment M which
occurres near the midpoint of section AC, are
obtained from the diagrams shown in figure 2c¢) and
d) and the maximum allowable thickness of the
spring is calculated from the expression
0,/E=1/12(t/k)’N* + 2(t/kK)M;, 15)
where o, is the allowable bending stress of the
spring material. In most practical cases t/k is of
magnitude 1/100 and the N*-term is negligible. In
this case the maximum allowable thickness of the
spring is given by the simpified expression
t=2kao,/(EM}), (16)
The value of P* can now be found from the
diagram shown in figure 2a, and the total radial
force excerted by the antitorque system on the hole
wall can be calculated as (assuming 3 springs):
P, = AP*Ewt¥/k?, an
If the approximate thickness given by eq. (16) is
introduced, we get

P,=4kwalP*/(E2M23),

If this force - with a reasonable choice of the spring
width w - is sufficient to prevent the drill from
rotating, the next step will be to obtain v from the
diagram shown in figure 2b. Then 1 and a can be
calculated, 1 vk and a = (i-y)k respectively.
Finally the shape of the curved section of the spring
can be obtained by means of eq. (4), using the
values of v and P* found above, and the value of
M? obtained from the diagramme shown in figure
2e. The rise of the curved spring section can be
found from figure 2f.

If the radial force given by equation (17) is too
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small, different characteristic lengths k, b and e
should be used, and the design procedure repeated
until a satisfactory result is obtained.

The spring supports of course should be designed
to carry the combined loads N and P.

Example

For the Danish ISTUK deep drill (Gundestrup,
1982) the characteristic lengths of the antitorque
system are k=34.5cm, b=3.7 cm and e=0.6 cm,
resulting in b/k=0.107 and e/k =0.0174.

With these values, the following dimensionless
quantities are obtained from the diagrams shown in

figure 2: P*=4.25, y=1/k=0.452, N*=204,
*=-0.97, M? =-0.208, and f,/k =0.060.
Taking w=2cm, t=0.25cm and
E=2.1%106kp/cm? the corresponding

non-dimensionless quantities become: P =19.5 kp,
1=15.6 cm, a=k-1=18.9 cm, N=93.7 kp,
6="7580 kp/cm? (eq.(15)), and f,=2.1 cm.

Finally the shape of the curved section of the
spring is found by means of eq.(4). The following
table presents the results:

x/1 0 0.1 0203 04 05 06 07 08 09 1.0

f(cm) 0 0.310.620.921.20 1.46 1.67 1.85 1.98 2.06 2.08
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Figure 2a. Dimensionless

transverse supporting force as
function of b/k for the indicated
values of the dimensionless
eccentricity of the spring support.
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Figure 2d. Maximum absolute
bending moment as function of
b/k for the indicated values of the
dimensionless eccentricity of the
spring support.
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Figure 2b. Chord length of curved
spring section as function of b/k
for the indicated values of the
dimensionless eccentricity of the
spring support.
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Figure 2e. Bending moment at
transition point as function of b/k
for the indicated values of the
dimensionless eccentricity of the
spring support.

Figure 2. Leaf spring design diagrams.
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Figure 2c. Longitudinal supporting
force as function of b/k for the
indicated values of the
dimensionless eccentricity of the
spring support.

T
0.00 0.05 0.15

@

ST

2

o

]

pe

9 /

a b/

7

M @ /
g /4
— /7
= Sk

S Y./ 4

a /’

/

3

=) %

g

o |

8

a

000 005 010 045 020
B/K

Figure 2f. Rise of curved spring
section as function of b/k for the
indicated values of the
dimensionless eccentricity of the
spring support.



