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       VIA  THE  FINITE  ELE)vfliNT TECHNIQUE
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   Uhivenyity ofA laska fuirbanks,
FZiirhanky, Alaska 99775-17ie, CLS.A.

 Abstract: An  axisymmetric  finite element  computer  program was  devcloped to calculate
heat transfer in cylindrical  (r-z) geometry. The  technique  is applicable to steudy-state  and

time-dependent preblems and  can  handle convective,  temperature-prescribed  and  heat-
flux-prescribed boundary conditions. It employs  the heat capacity  method  through  the

Dirac delta function to represent  latent heat effect  during freezing or  thawing  and

computes  movement  of  the phase front. A  number  of  tests with  different materials  and

boundary conditions  were  cenducted  te validatc  this code  against  heat transfer situations
with  and  without  phase change.  The  results  showed  goed agreement  with  exact  analytical

andnumericalsolutions.

 The model  was  then applied  to determine tempcrature  profiles in ice cores.  Subsequent
investigations were  made  to determine the rate  of  freezing in a borehele and  the

movement  of  the  freeze front with  time.  Furtherrnore, results  were  generated for

predicting complete  freeze-up of  the icc test well  maintained  by the Polar lce Coring
OMcc  for a  number  ofbQundary  conditions.

1. Introduction

    The  Polar Ice Coring Office (PICO), operated  by the University ofAlaska  Fairbanks
for the National Science Foundation, is charged  with  the development and  operation  of  ice

coring  dri11s and  augers  fbr scientific  research,  Ice cores  recovered  by these devices from
Greenland  and  Antarctica will  provide a continuous  environmental  record  of  the past
several centuries. Scientists are  currently  analyzing  these cores  and  the gases trapped  in

their pores to determine what  global climatic  conditions  were  in the past, Recovering these
cores  from great depths in ice sheets  without  damage and  contamination  is the primary
objective  of  PICO. A  second  goal is to coltect  subglacial  samples  from bedrock beneath
the ice pack.

    Environmental Consideration: Common  to all deep ice sampling  devices to date has

been the use  of  thousands  of  gallons of  drilling fluids, such  as  diesel fuels, trichloroethyl-

ene, fluorocarbons, etc,, in a designated pristine environment,  Because  of  environmental

concerns  and  the fact that contamination  ofthe  core  may  interfere with  chemical  analysis

of  the ice and  trapped  gases, thereby  leading to inaccurate results,  the search  for an
alternative deep ice core  dri11ing fluid continues.  We  are  also  aware  that new  protocols are
under  discussion that may  prohibit the use  of  conventional  dri]ling fluids or, if allowed,
may  require  the fluids to be pumped out of  wells  and  removed  from polar regions--a  very

expensivealternative.

    Hot-Water-Mechanical Drill: In response  to these concerns,  PICO  has introduced a

conceptual  design fbr a hot-water-mechanical drill suitable  fbr coring  through  thick ice
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 time with  hot water  as the dri11ing fluid, A  very  important factor in this design
is
 to ensure  that heat transmission from the hot water  to the ice core  does not  severely

damage the core  by fracturing or  melting,  A  cemplete  description of  such  a  thermo-
mechanical  drill ofPICO  design is described in DAs et al, (1992).

1,1, Analyticalstudy

    For this reason,  in the first phase of  this study  analytical  solutions  were  developed
(DAs et al,, 1991a) to determine temperature distributions in cylindrical  ice cores  while

they were  subjected  to diffbrent initial and  boundary temperatures. The  cores  were

analyzed  by three models:  (1) an infinite cylinder  model;  (2) a  semi-infinite  cylinder

model;  and  (3) a finite cylinder  model.

    In the infinite cylinder  model,  enly  radial  heat conduction  was  considered.  In the
serni-infinite  modei,  heat flow is assumed  radially  and  from one  end  of the ice core,  e.g.,

the bottom of  the core  befbre the core  is broken and  extracted.  In the finite cylinder  model

heat conductien  was  assumed  both radially  and  axially  from both ends,  Detailed derivation
ofthese  solutions  and  computer  programs fbr all three models  have been described by DAs
et aL  (1991b). Using these models  we  perfomied parametric studies  to determine core
sizes  that are  obtainable  for different surface  temperatures  due to the presence ofhot  water

in therrnal-mechanical drills without  jeopardizing the interior region  of  the cores  due to     '

excessive  heat penetration, Furthermore, the temperature  distribution in a core  can  be used
by stress  analysts  to determine conditions  that prevent fracture in cold  ice due to thermal
stresses. In a later section  ofthis  paper we  have presented some  temperature profile results
from the analytical  solutions  and  have compared  them  to the finite element  solutions,

    The analytical  methods  developed  during the first phase were  able  to predict
temperature  profiles in ice cores.  These profiles gave us  information about  the upper
temperature  limit of  the hot water  in contact  with  the core  barrel. From  this information
one  can  contrel  the water  temperature and  flow rate in order  to avoid  overheating  the core.
However,  these analytical  techniques  were  based on  many  simplifying  assumptions  which

were  not  necessarily  valid  under  actual  field conditions, For example,  for these theories to
apply,  a  constant  surface  ternperature around  the core  must  prevail, which  may  not  be a
realistic  boundary condition.  Therefore, improvements in these modeling  techniques were
necessary  and  this led to development of  a  general finite element  model  that could
oyercome  the limitations of  the present analytical  methods,

1,2. Einiteelementupproach

    The finite element  program was  deyeloped in two  steps.  In the first step, an  algorithm

was  developed that could  solve  axisymmetric  heat conduction  problems with  variable

thermal  propenies and  boundary conditions,  but without  the capabMty  of  handling the
phase change  aspect  of  the problem that occurs  in thawing  and  freezing media.  Then this
initial portion of  the program  was  validated  by comparing  the computed  results  with

available  analytical  and  numerical  solutions  fbr steady  and  transient heat conduction
problems, In the second  stage,  the phase change  ability  was  incorporated into the theory
using  the Dirac delta function approach  of  O'NEILL (1983a,b). Since there are  no  exact

analytical  solutions  available  fbr complex  phase change  problems, the program was
verified  against  numerical  solutions  and  approximate  integral solutions. Finally, the



National Institute of Polar Research

NII-Electronic Library Service

NationalInstitute  ofPolar  Research

258 D.K. DAs and  S.S, Jois

program  was  applied  to practical cases:

1) fbr determining temperature  profiles in ice cores  in the initial phase of  heating; 2) for

determining ice borehole freeze-up time; and  3) to obtain  the time required  for complete

freezing of  the PICO  ice test well,

2. Mathematical  Formulation (Nonphase-Change Case)

2.1, Governing equation  and  boundaty conditions

    The two-dimensional heat conduction  equation  in cylindrical  coordinates  with  circular

symmetry  ls:

            ; 8, (Kr gT, )' 8.(K 
OoT,
 )+g-c  

eoTt
 -  o. (i)

Consider the two-dimensional  region  S) with  a total

cenditions,  in the most  general form, are

                    bT          OT
                       n,+h(T-7L)+G=O,             nr +  KL      K
                    az          ar

boundary F, The boundary

on  L,t)O (2)

T=-f on  Il,t2O (2a)

and  the initial condition  is

T=: 71. in 9 att==O (2b)

2,2. Semidiscrete variationalformulation

   The semidiscrete  variational  formulation of  eqs. (1) and  (2) fbllowing REDDy  (1984)
can  be found by multiplying  the equations  with  a  test function v  and  integrating them  over

a  typical element  9  
`e'
 with  the application  ofthe  divergence theorem.

         L                                                  bT                               bv OT                 Ov OT
                                                     )dr dz +                                       

-  vrg  +  Cvr                         +  Kr           ce) (]K lr
                                                  bt                               bz b2                 er Or
                                                                  (3)

        g,){ rvh  (T- IL) + rv4  } ds t= o,

The  finite-element interpolation of  the pnmary  variable  (temperature) is separated  into

spatial  and  time  coordinates,

          n

T( r, z, t)-  ZZ(t)  }Pj( r, z).
          J-1

(4)

Substituting eq,  (4) andv  
=:
 !PLinto  eq,

                     [Mce)] { T}

(3), we  obtain  the matrix  equation

+  [ KCc) ] { T}.. { F(e, }, (5)

where

NII-Electronic  Mbrary  
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ndiz) -  L,., ev,  vdr  da (6b)

"t'== EIi).(e)r (h z. - ij ) !p, ds + L,.,y', rg  dr dr (6c)

=iI#)-ag-

 +  ny)･-

The simplest  elernent  for a generar axisymrnetric  problem is an  axisymmetric  ring

generated by a  triangle revolved  around  the z-axis  as  illustrated in HuEBNER  and  THoRNToN

(1982). For triangular elements,  the shape  functions can  be expressed  in terms of  area

coordinates  for which  exact  fbrmulas are available in REDDy  (l984) fbr integration over

line path and  the area.  A  linear interpolation function for the triangular element  is
assumed.

             1

      
V(T'=

 2A, (aL+P,r+y,z); i-- 1,2,3 (7)

where  eti, fii, M are  constants  for a  given element  and  are given by

      ai=t]zk-nkz];  Bi=zi-zL; yi=rL-rl. (8)
After substituting  eqs.  (7) and  (8) into eq. (6) and  evaluating  the line and  area  integrals,
with  the help of  closed  form expressions  ayailable  from REDDy (1984) and  SQuARE  (I970),
the fo11owing matrices  fbr each  element  were  obtained.

[Mte)]{T}+([ K(:'] +  [ HCe)] ) { T}-  { Ee) .  zi!")} +  { ,ffte) }, (9)

where

[M`j' ]= ,tAC i, [( eq cxci Aer-+ ori zz + Pi eq )
( ori YJ +  Yt ctJ) lili ( £. , r, zi + 9iz-) + B, B,

( S, y, +  yL B,) flli ( S. ,r izi +  9r"2i )+ 'ri "r,
i=! (r]+r2+r3)13, i== (zj+zi +z3)13,

Ae12

Ae12

Ae
 12

  3(Z

 ri･
 i!1

  3(Z

 ri
 1=1

  3(Z

  i-

+  9B)+

+9r-3)+

czi+ gif  )]

(9a)

[Kkljce)]r-ZL4e[K Bi P+K  y, M];iandl'  
m-

 1, 2, 3, (9b)
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(9c)

(9d)

       {P:'}= 
-il/[ocr-+

 IB2' (£.,r?+9i7!)+  172" (#.,r,z,+9iz-)]. (9e)

These expressions  are  given in detail here instead ofthe  cornpact  matrix  fbrm  found in text

books  so  that a potential user  can  program these expressions  directly into a computational

algorithm.

                  3. Addition  of  Phase Change  Capability

   The  ability  to handle phase  change  was  incorporated into the mathematical

fbrmulation by  introducing the Dirac delta function in the heat capacity,  as  demonstrated

successfu11y  by O'NEiLL (1983a,b). The heat capacity  is expressed  in terms of  the latent

heat and  the  Dirac delta function as

                          Ceff=C'L6(TrL)･  (1O)

It is evident  from  eq,  (6b) that the only  matrix  to be affected  by inclusion ofthe  latent heat

term is the heat capacity  matrix. The  new  heat capacity  matnx  equation  is now

      M`;･'=L,,,, Cr V,IP,dr  dz+L  JI,,,, r6  (7L-Z) ll`, Y"jdr dz. (11)

For elements  that do not  contain  the phase change  isotherm, the second  term in eq,  (11),
called  the latent heat integral (LHD, becornes zero  and  the constant  heat capacity  term is

evaluated  in exactly  the same  fashion as  the problem without  phase change,

    To apply  the property of  the Dirac delta function in the evaluation  of  LHI, it was

refbrrnulated  in terrns ofa  local coordinate  system  ( o-T),  as shown  in Fig.1, within  an

element  that is undergoing  phase change.  This technique  has been used  successfully  by

GoERiNG (1984) and  SRivAsTAvA  (1988). In linear triangular elements,  the phase change

isotherm is linear and  the Faxis  is along  and  the o-axis  is perpendicular to this isotherm.

The  latent heat integral in terms ofthe  new  coordinates  becomes

                   Lm-L  JI, ,,,r6(7Lz)  }gc ytf1do dz (i2)
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     Fig. 1. A  opical element  showing  the local coordinate  sytstem and  thephase  change  isotherm  that

          separates  the thawed  andfrozen  region.

where  Vi and  !P : are  the new  shape  functions in terms of  local coordinates  and  are written

as

            v;=(  
!l'!b7V'")T+

 tp',, ; lp;= 
(V'b

 il 
WiS)r+

 W,,. (13a,b)

Rewriting the integral in eq.  (12) by introducing a  temperature gradient term  following
O'NEILL (1983a, b),

              LHz-LJI,,., r6  (irLTL)dTv:v: 
ddll

 dT, (14)

The  benefit of  this transformation is apparent  by recognizing  that a  mathematical  property
ofthe  Dirac delta fimction integral with  temperature terms is equal  to unity.  Therefbre, the

integral in eq.  (14) simplifies to

                      Lfll 
==LJI,,,,

 rv:  }g; 
ddg

 dT. (is)

As  the temperature gradient is perpendicular to the phase change  isotherm, it is also
parallel to the a-axis.  The temperature gradients are also constant  within  each  element  for
a  linear triangular element.  The  inverse of  the gradient in integral (l5) represents
magnitude  of  the temperature gradient, which  can  be written  as

                             da 1

                             dT=  IVTI. (16)

The general expression  fbr temperature gradient within  an element  is

1VT1-2L,(V7(-T-Al-F71-iil-iF71-iii:-Si-;i-iTJT:FiTVI-gi-ifFK-i71 
T3,zp,  i}p,)(z7,+ny,+7iy,)) (l7)
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Substituting the inverse oftemperature  gradient in the integral ofeq.  (15), we  obtain

                       Lifll :=L  1viTl fr}P1 !" ldT. (1s)

The radial  coordinate  r is now  expressed  in terms of  the shape  imctions, which  are based
on  the new  local coordinate  ( q  O system.

                        r=ri  }P 'i+r2  }P3+r]V'3.  (19)

When  expressions  for the radial  coordinate  and  modified  shape  functions are introduced

into eq. (18), we  find the fo11owing integral.

M;=L  1 vlTj Jl(riY'1+r7}P'2+r]EP'3)((!P'bilV"")T+ Ep,,]((EP]bil 
}P]a)T+

 }p],]dz (2o)

This integral (20) represents  latent heat effect  for the ij'h term in the element  heat capacity

rnatrix,  The  integral is eyaluated  within  limits O to land  results  in lengthy integrations.

Fortunately, they yield exact  analytical  results without  requiring  any  numerical  integration,

After the necessary  algebra,  we  have obtained  an  analytic  expression  fbr the ij'h term ofthe

latent heat matrix,  Since this important final expression  was  not  cited  in the literature

anywhere,  we  have listed the complete  expression  here for use  by potential users.

               Mi-L  iviTi( 
Cai`

 + 
G3t]

 +  
Csi2

 +chi),  (2i)

where  C], C2, q, and  (]4 are  constants  for any  given element  and  are expressed  as

       c,=  
(}P]b

 i 
IPm)(IPib7

 
YLa)

 ( r,(}Pib i EPLa>+ .,(EP2b  7 V2")+ r,(}P3" i }P3z)], (2la)
C2 =  lli [(}P,b - !li,,) (}P]b- EeC,) (rL EFi. + r? }P2. + r3 V3,) +

    { Ya (Vb - !PLa) +  }P]a (}Pdh 
T
 YIbE)}

    {rt ( !Ptb - }PL,) +  r2 ( !P2b - }Ph) +  r] (V3b - Yt],) }]
                                          ,

(21b)

Ci = -l" [ { IP]a (IPib - }Pta) + ViH (!Pjb -

    !P(,HIPia{(rl ( YUIb - !Pi,) +  r2 ( Yl2b m

C4 =J  }Pi. EP].(ri Y'i. +  r2  }Pie +  r] !P3a) -

!Pla) } (ri SP], +  r2 Vta +  ri !P3.) +

Eg2,) +  r] ( V]b - }P3,) }]
                 '

(21c)

(21d)

3.i. Thermalproperties ofpartially.frozen andpartially  thawedelements

    In our  cornputational  steps,  all elements  are  checked  for their state. If the element  is

either  completely  frozen or  completely  thawed,  then  the respective  thermal  properties are

assigned  to the element.  In case  the element  is undergoing  phase change,  it must  contain

the phase change  isotherm within;  therefbre, the equivalent  properties are  calculated  based



National Institute of Polar Research

NII-Electronic Library Service

NationalInstitute  ofPolar  Research

Therrnal Modeling of  Ice Cores 263

on  the ratio  ofvolume  thawed (or volume  frozen) to the tota1 volume  ofthe  element.  The
therrnal properties of  such  elements  are  based on  the fo11owing equations.

                      kl,=k K" 
'k  E' `22a)

Inserting the expressions  ofvolumes  in axisymmetric  ring  elements  one  ebtains

                    2,- ]ll i".",
-

,,Zl+k  gn.',,',,:t, (22b)

where  Af and  At are  frozen and  thawed  portion of  the total area  A. shown  in Fig. 1 .
The volumetric  heat capacity  relation  is

                         c,,:=: cf KK 
+G  E. (22c)

HeTe, K is the volume  ofthe  entire  element,  V} is the volume  ofthe  frozen element,  and  Z
is the volume  of  the thawed  element.  Furthermore, r-' is the centroid  of  the frozen portion
of  the element,  F" is the centroid  of  the thawed  ponion of  the element,  and  r- i's the centroid
of  the entire element.  However,  for simplicity  the following approximate  forrnulas may  be
used  assuming  r', r-', and  r-" are  close  to one  another,  which  will  be the case  for small
triangularelements.

       th,= jll ii.`+ k AA,f;CL""C' AA,'+Cf :l (23a,b)

3.2. 7}me-smppingscheme

    For transient problems we  have done the time  descretization with  the e  method  of
approximation  described in REDDy  (1984). The temperature field at the end  ofa  time  step

At =

 t.,i -  a is obtained  from the fbllowing equation,

([M] +  (EhAt["){ T}.,, -

 [[M]- (1-a ztr[K]]{ 7}.+ At[e {F}..,+ (1-El){F}.].(24)

In the above  equation,  M  and  K  represent  the heat capacity  and  the conductivity  matrix,  as

denoted earlier,  Furthermore, F  and  T represent  the heat load vector  and  temperature
and{F}.  and  { T[I..t refer  to the parameters at times  t. and  t,.i respectively,  The well-known

parameter e  can  have several  values:  O for the forward difference scheme,  IX2 for the
Crank-Nicolson scheme,  213 fbr the Galerkin scheme,  and  1 fbr the backward  difference
scheme.  Both the Crank-Nicolson and  the Galerkin schemes  are unconditionally  stable,

We  tried both of  them  for several  test cases,  and  no  significant  difference in the final
results  were  observed,  Finally, we  adopted  the Crank-Nicolson scheme  because of  its wide
usage  and  set e== 112 in all ofour  subsequent  rLms,

    We  have developed the theory and  the computational  teehnique  for our  axisymmetric

program fo11owing the two-dimensional  cartesian  program FEM2D  of  REDDy  (1984).
Further details on  input, output,  and  running  of  the program,  which  we  have named
FEMRZ(Finite  Element Model in r-z coordinates)  can  be found in SRivAsTAvA  (1988) and

Jois (1992). In addition  to ice drilling problems, this program has also  been applied
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successfu11y  to predict dissociation of  natural  gas hydrates, which  has been described by

DAs  and  SRivAsTAvA  (1991).

                  4. Validation (Nonpbase-Change Cases)

4,1. Steacly-state heat conduction  examples

Case 1: An  infinitely long, hollow cylinder  ofinner  radius  l m  and  outer  radius  2 m  is

considered.  Temperatures at the inner and  outer  surfaces  are prescribed as 100e"C and

OeC, respectively.  With forty elements  and  forty-two nodes,  as  shown  in Fig. 2a, this

problem was  solved  by the present finite element  method.  Our computed  results  match

exactly  with  the analytical  and  numerical  solutions  presented by RAo  (1989) for this

problem, as  seen  from Fig, 2b.

               z
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                     RAI)IAI, l]IS'1'AN(J]7, IN CFIN'FIMI:Tl･]IV;

                              (b)
Fig. 2, (ep Mesh  used  to simulate  the radial  heat conductionprobiem  in Rtio (1989).
     (Zt) Comparison between the sotution  given in RAo  a98Sl) and  thepresentfinite  element  results.

Case 2: This problem consists of  heat flow in a composite  cylinder  comprised  of  two

media  (Fig. 3a) as  presented by HuEBNER and  THoRNToN (1982). The inner surface ofthe

cylinder  is held at T=  2000C, while  the outer  surface  of  low conductivity  insulation is held
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  conduetivity  K  in PP7en･ 

OC.

(bjMesh used  to solve  the l"obJem in HuEBNER  and  I)loRNroN (1 982),
(e) Cbmpan'son beti-een the solution  given in HuEsNER  and  THaFitNT'oN (l9g2) and  the present
  fimite element  solution.

at T=  1000C, This problem was  simulated  with  twenty elements  and  twenty-two nodes  as

shown  in Fig, 3b. As evident  from Fig. 3c, the finite element  solution  exactly  matches  the
analytical  and  numerical  solutions given in HuEBNER and  THoRNToN  (1982).

4.2, Tftxnsientheatconductionexamples

Case 3: This transient heat transfer problem  with  convective  boundary condition  has been
taken from WHITE (1984). A  short  cylinder  16 cm  high with  a  diameter of  6 cm  is initially
at 400C and  is then plunged into a fiuid with  h =

 300 W!m2  
･
 K  and  an  ambient  temperature

of200"C.  The  material  is bronze with  a  conductivity  of26  Wfm  
'
 K  and  diflUsivity of8.6

(10'6) m2fs.

    Because  of  symmetry  about  r- and  z-axes,  only  one-quarter  of  the cylinder  is modeled.
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Two  different types ofmesh  were  used  to ascertain  that results  would  not  change  by

changing  mesh  orientation  (Figs, 4a and  4b): a) standard  skew  mesh,  and  b) reverse  skew

mesh,  Both  gave the same  results  and  comparison  of  temperature  at the center  of  the

cylinder  versus  time in Fig. 4c shows  a good  agreement  between analyticai results  from

White  and  our  finite element  results.  The  analytical  solution  was  obtained  on  the

centerline  using  Heisler centerline  formulas given by WHITE (1984).
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   FIg. 4, (b) Mesh  with  a  standard  skowness  to  model  theproblem  in }vailIE (I98".
        (Zij Mesh  with  a  reverse  skewness  to verij3, mesh  independence.

        kV Comparison oftemperature rise  with  time at  the center  ofthe cylinder tvi thepresent  method

          and  thesolution  in PMnzE' (i984).

Case 4: A  10 cm  diameter, 16 cm  long cylinder  with  conductivity  O.5 Wlm･K  and  a

diffusiyity of  5(10'7) m2fs  is initially at a  uniform  temperature  of  200C. Suddenly, it was

placed in hot air at 5000C and  a convective  coefficient  of  30 W!m2-K.  Because  of

symmetry  about  r-and  z-axes,  only  one-quarter  of  the cylinder  is considered.  As  we  did
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fbr Case 3, to test mesh  dependence, two  different types of  meshes  were  used  based en
standard  and  opposite  skewness  (Figs, 5a and  5b), The radial  temperature  profiles at the
top (z=O) and  at  the center  (z=8 cm)  of  the cylinder  after  thirty minutes  of  heating are
compared  with  the analytical  solution of  KRIETH  and  BoHN (1986) in Fig, 5c. Both profiles
show  excellent  agreernent  with  the analytical solutions  and  demonstrate that changing
skewness  has minimal  effect on  this program.
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(b)Mbsh 2 with  reverse  skowness  to verC6,  mesh  independence,

(t) Comparison ofradial temperature  distributions at  the t(rp and  center  of'the cylinder qfier 30

  minutes  ofheating via  thepresent]7nite  eiement  method  ffAO  and  the analytical  sotutions

 fi'o,n KREi17f and  BoHN  (198e),

4.3. PZiliclation qfthe methodforphase  change  cases

Case 5: This problem of  thawing  around  a circular  pipe fi'om LuNARDINI
excellent  source  of  comparison  between four different solutions  of  a  cylin(1981)

 is an

drical phase
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change  problem  as shown  in Figs. 6a and  6b. The problem  is tested with  a  radially  varying

mesh  of  18 elements  and  20 nodes  for two  values  of  superheat  factQr ¢ . The  results  of

Sparrow, and  Tien and  Churchill, adapted  from Lunardini and  shown  in Fig. 6b, are  from

numerical  solutions,  On  the same  figure. curves  of  approximate  analytical solutions  from

the method  of  Lunardini, and  the heat balance integral (HBI) method  are  also  displayed.

The analytical  methods  are  described in detail in LuNARDINI (1981). Our  finite element

results  show  good agreement  with  all four methods,  as  observed  in Fig. 6b.

            i
             1 24  20

             l
             [
                   t3  19

                  1.0 cM  4,O cm  tO.Ocm

                                  (a)

eqmp6<ecenmmAZoHmzmENa
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1.5

O.5

21

1718T1.0cmr

            O 8 16 24  32 40

                         DIMENSIONLESS  TIME  r

                                 (b}
   Fig. 6 (Lu Mesh  usedfor  eomputation  ql'thawing  around  a  circularpipefrom  LvNmDiNl  rl98IJ.
        (tV Comparison (ltlXbur dit7lerent methods,from  LvswRDI.sv rJYSIY with  the present.finite element

          metkod.

Case 6: This problem of  radial  freezing of  water-saturated  sand  was  taken  from  O'NEILL

(1983a). It consists  of  outward  radial  freezing around  an  infinitely long hollow cylinder

with  time-dependent boundary conditions.  The  histories of  boundary temperatures are

presented by O'NEILL (1983a), which  we  inserted into our  program by a polynomial as  a

function of  time, The physical properties used  fbr water-saturated  sand  and  the mesh  (324
elements,  196 nodes)  used  to simulate  the problem are  shown  in Jois (1992), The  prograrn
was  mn  for 1OOOOO (27 hours) and  the fteeze-front radius  presented in Fig. 7 was  fbund to
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FYg, 7, Comparison ofradialfi'eering in water-saturatedsandbetween  the resultspresented  by O7VEit,l,
     (1983tij and  thepresent.finite element  method.

be in geod agreement  with  the analytical solution  presented by O'NEILL (1983a).

                            5. App]ications

5.i. Prediction oftemperatureprojiles in ice cores

    In hot-water ice coring,  the therrnal shock  caused  by warm  water  coming  in contact
with  cold  ice can  result  in therrnally-induced  stresses which  can  cause  cracking  of  the

cores. To determine these stresses,  one  must  find the transient temperature prefiles.

   This example  presents such  a  case  for a  finite ice cylinder  undergoing  transient heat
conduction.  This transient axisymmetric  heat conduction  problem yields to an  analytical

solution  described in DAs  et al. (1991a) expressed  in a  non-dimensional  fbrm. A  similar

solution  is also  reported  by MyERs  (1987) in a dimensional form. A  short cylindrical ice
core  of  20 cm  in diameter and  50 cm  in length is considered  whose  geometry  is shown  in
Fig. 8a. Because of  the symmetry  about  r- and  z-axes,  only  one-quarter  of  the cylinder  (25
cm  height ×  10 cm  width)  is considered  for simulation  of  this problem. The jce cylinder  is
initially maintained  at a  temperature of-40eC.  The  lateral and  the circumferential  surfaces

of  the cylinder  are  maintained  at O"C. The  thermal  diffusivity efice  is taken as 1.33 × 1O'6
m2fs. The mesh  used  to simulate  the problem  consists  of200  elements  and  121 nodes,  as

displayed in Fig. 8b, The sides  representing  symmetry  in Fig. 8b are  censidered  insulated.
Two  comparisons  (Figs, 8c and  8d) were  made  for several  temperature  profiles: the first

one  for different axial  positions at timet=  1000 s, and  the second  one  for different non-

dimensionalized times at a  fixed axial  location ofZ=  O,5 (mid-section ofthe  cylinder).  As

seen  from these  plots, the finite element  solutions  match  accurately  with  the analytical
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(ZV ,e4lesh  used  to simutate  the heat conduction  problem  in a  c.vlindricat  iee core.

(lr) Comparison between thepresent.finite element  sotution  and  the analytical  solution,from  MvaRs (IP8Z}
  and  DAs et  aL a9Pla) .fbr radial  temperature  profles in a  finite q}plinder at dtfilenent longitudinal
  positions at  IOeO s. 7bu is the non-dimensional  time  given b.v dttiitsivity x  timeh'adius2.
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                             RADIUS  iN CMS

  Fig. 8. (ZV Comparison between thepresentfinite  element  solution  and  the analyticalsolutionfrom  M]zERs

         (I98Z) and  DAs  et  aL  aP91`ij for radial  temperature  pr(lfiles at  mid-section  ofa,finite cylinder
         at  dCfflerent time  intervals,

results  obtainable  through the series  solution  in DAs et aL  (199la) and  MyERs  (1987).

5.2. Ereezingofboreholes

    For the thermo-mechanical drill developed at PICO,  one  of  the drilling fluids we  are

experimenting  with  is hot water.  After the coring  operation  is complete,  residual  water  is
left in the boreholes, The sarne  is the case  fbr pure thermal drilling by a  hot-water nozzle.
Often the  boreholes are  kept open  fbra  long period of  time  to conduct  downhole
experimentation.  Therefbre, an  estimate  of  the freezing rate  of  these  boreholes is a
necesslty.

    The  case  considered  here is for the inward radial  freezing around  a  water  hose of3  cm

diameter. The hose is placed in a  borehole drilled in ice that has a  diarneter of40  cm.  The

one-dimensional  mesh  with  30 elements  and  32 nodes  used  to simulate  the problem is
shown  in Fig. 9a. The temperature of  the residual  water  in the borehole is 5"C (Koci,
1984). The following therrnal properties were  taken  as the input parameters from YEN  et

al. (1991). For the frozen zone, thermal conductivity  K  
=
 2,298 Wlm･"C  and  the specific

heat C  
=t
 2.100 kJfkg･"C, For the thawed  zone,  thermal conductivity  K=  O.5819 Wlm･"C

and  the specific  heat C  ==  4.186 kJfkg-OC. Latent heat L -=  305361  kJ!m3, and  the phase
change  temperature  

=
 OeC. In Fig. 9a displaying the mesh,  the inner radial  boundary at the

hose surface  is maintained  at 50C and  the outer  radial  boundary is -50C, The top and
bottom surfaces  are  considered  insulated. Figure 9b shows  temperature  profiles at  different
time  intervals.
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       (h) 1lemperature prqfiles in the borehole during.freezing at  dC(ferent time  intervals.for an  ice tempera-

        ture of-50"C

   Next, we  ran  the program for different borehole wall  temperatures,  The  borehole wall

temperatures  (i.e., boundary condition  at outer  radial  boundary) employed  for this
simulation  are  taken  fi'om HuMpHREy  and  EcHELMEyER  (1990). As  is evident  frorn Fig. 9c

showing  the movement  of  the freeze front with  time,  the lower the temperature at the

borehole wall,  the less time it takes to refreeze.

   The  next  case  considers  a  large borehole (76 cm)  made  by  hot-water dn11ing and  is

left water-filled  with  the hose removed.  A  one-dimensional  mesh  (Fig. 10a) with  76
elements  and  78 nodes  was  used  to simulate  the inward radial  freezing of  this borehole
with  a radius  of  38 cm  (Koci, 1984). The  thermal  properties used  fbr sirnulating this

problem are the same  as those for the previous example.  The  centerline and  the top and

bottom surfa ¢ es  were  considered  to be insulated, The  outer  boundary  temperatures  were

assigned  two  difierent values, The program was  run  with  two  different borehole wall
temperatures of  245 K  (-280C)and 256 K  (-17"C) (Koc[, 1984). The progression of  the

freeze firont at different time  intervals is shown  in Fig, 1Ob,
2-D  Borehole  Case; This case  is fbr an  axisymmetric  freezing problem fbr the 70-cm
borehole in r-z  plane, The mesh  used  fbr simulating  this case  consisted  of  506  elements
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and  288 nodes  and  is presented in Fig. 1la. The  borehole radius  is 20 cm  and  the hose
radius

 is 1.5 cm;  they  are the same  as  one  of the previous problems, The height of  the
borehole modeled  is 1OO cm,  The  top  and  the bottom boundary ofthe  borehole in Fig. 11a
are  subjected  to constant  temperatures of  -20eC  and  -50"C  respectively,  while  the inner
and  the outer  radius  of  the borehole are  held at temperatures  of  1,8"C and  -400C

respectively  (Kocf, personal communication,  1992). Initial temperature ofwater  left in the
borehole

 was  1.8"C. These temperatures can  all be changed  to suit field values  and  many

cases  can  be run  with  this program. The  migration  of  the phase change  isotherm in this
two-dimensional problem  subjected  to the specified  boundary conditions  is presented in
Fig,

 1 lb. Notice the progress of  freezing until  the time  4621O  s (12.8 hr) when  completion
of  freezing around  the hose occurs, The time  to finish freezing will  change  with  other
boundary

 and  initial temperatures  and  can  be explored  easily  by repetitively running  the
program,

5,3. Fbeeezing ofPICO iee test well
    The PICO  ice test welt  is shown  in Fig. 12a. The  inside radius  ofthe  well is about  50
cm.  The mesh  used  fbr simulating  this as a one-dimensional  case  consists  of24  elements
and  26 nodes,  as  presented in Fig, 12b. The  temperature of  the water  left in the well  was

assumed  to be l,66"C (35'F), which  can  be easily  changed  for other  test runs. Boundary
conditions
         for the finite element  mesh  of  Fig. 12b are:  the centerline  and  the top and
bottom surfaces  were  considered  to be insulated whereas  the outer  radial  surface  was

assigned  vaEues(see  Table  1) varying  from -180C  (O"F) to -O.11OC  (3l.8"F) - the
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rent  ice

temperature of  the permafrost surrounding  the well.  The program was  run  fbr these

different boundary temperatures  (which can  be attained  through  the cooling  coil provided

around  the periphery ofthe  well).

    The freezing time required  fbr complete  closure  of the well  is shown  in Table 1.

Different time steps used  in the computations  were  At 
==

 40, 50, 100, 200, and  400 s

without  any  perceptible change  in the final results,  Therefbre, the program  is stable and

does not  show  unusual  variations  with  different time  steps.  Finally, a time  step  At of  1OO s

was  adopted  to generate the freezing time given in Tabie 1. From  this table we  see  natural

freezing by the influence ofpermafrost  will  take 1 ,8 years, The  closure  rates  are dependent

on  boundary temperatures and  the initial water  temperature.

2-D  Test Well  Simulation : This is a two-dimensional treatment of  the same  problem
involving the ice test well  in an  r-z plane. The mesh  consists of  460 elements  and  264

nodes  as  shown  in Fig. 13a. Half of  the height of  the well  was  simulated  fbr illustration

purposes so  that we  have less elements  to compute,  The  water  column  in the well  was
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assumed  to be 6.86 m  (22,5 feet) high. The  boundary conditions  at the top, the bottom, and

the euter  surfaces  of  the modeling  zone  in Fig. 13a are  subjected  to temperatures ef  
-70C

(20eF) (cold air), -O,11OC  (permafirost), and  
-7eC

 (200F) (cooling coil), respectively,  The

centerline  ofthe  domain in Fig. 13a confbrms  to insulated condition  due to symmetry.  The

progression of  the phase change  isotherm as  time progresses is illustrated in Fig. 13b,

representing  the right side  as  the frozen zone  and  the left side  as the unfrozen  zone.

6. Conclusions

    A finite element  algorithm  fbr solving  heat conduction  problems with  phase change  in

a cylindrical (r-z) coordinate  system  was  developed and  implemented  in the finite element

code  FEMRZ.  The  inclusion of  phase change  ability was  accomplished  by using  the Dirac

delta function to simulate  effective heat capacity.  Validation of  the method  at various

stages of  its evolution  showed  good perfbrmance, Six test cases  of  steady  and  unsteady

heat conduetion  with  and  without  phase change  demonstrated accuracy  of  the results

produced by this pTogram. The  program was  then applied  to ice drilling problems to

predict temperature profiles in ice cores and  the freeze-up of  boreholes and  the PICO  ice

test well,
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Nomenclature

AeA,A,CqCeffGc,cpghKLqKKKKLllij4ttLZIr,ztTzLztv[H][K][M]area  ofthe  element

frozen element  area

thawed  element  area

volumetric  heat capacity  == pCb, J!m] -eC

specific  heat, Jfkg ･dC

effective  volumetric  heat capacity
equivalent  volumetric  heat capacity
volumetric  heat capacity  of  frozen material
volumetric  heat capacity  ofthawed  material

density, kg!m]
heat sourcefsink  in the system,  Wfm]

convective  coefficient,  Wlmi･OC
equivalent  theTmal  conductivity,  Wlm･OC
thermal  conductivity  ef  frozen material
thermal conductivity  in r - direction
thermal conductivity  ofthawed  material

thermal conductivity  in z  - direction
latent heat, J!m]
length oflinear  isothemi within  the element

length of  the iV side ofa  triangular element

prescribed heat flux at boundaries, W!m2
coordinates  ef  the i'h node  ofan  element

coordinates  of  the centroid  of  an  element

timevariabie

 temperature

initial temperature

phase change  temperature
ambient  temperature

prescribed temperature at boundaries

test functien
convectlve  term matnx

conductivity  matrix

heat capacitance  matrix
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{a}{Fh}{4}
a, fi, 7rce)6EP,,

 !P,Via,
 Wjs

!P(ib, IPjh

9{c)

convective,  heat fiux, and  heat source!sink  vectors,  respectively

coeencients  of  shape  function

boundary of  an  element

Dirac-delta function

shape  functions
yalue  ofshape  function evaluated  at point a

value  ofshape  function evaluated  at point b

domain of  an  element
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