Upcoming Fieldwork

2020 Arctic

  • Greenland: Climate Drivers and Ancient History in Greenland Ice

    Using the Foro 400 Drill, this project will drill a 400-450 meter long ice core from the Tunu region of northeast Greenland and analyze the core for a broad range of elements, chemical species, and isotopes to reconstruct climate and human impacts during the past ~4000 years. An ice-penetrating radar survey extending 40-km upstream along the ice-flow line upstream of the ice-core site will support interpretation of the aerosol and water isotope records, as well as understanding of any possible impacts from changes in deposition processes upstream. The goal of this research is to develop accurately dated, high-resolution, ice-core records of a broad range of elements and chemical species to expand and extend recently identified, causal linkages between (1) ancient societies; (2) volcanism and hydroclimate; and (3) wars, plagues, social unrest, and economic activity.

    Point of Contact:

    Joseph McConnell, Desert Research Institute.

    Schedule: 5/29/2020 - 7/1/2020 (estimated)
    Equipment: Foro 400 Drill
  • Greenland: Quantifying Heat/Mass Structure and Fluxes through the Full Thickness of Greenland's Percolation Zone

    The goal of the project is to quantify the structure, thermal state, and heat fluxes through the full thickness of the firn column across a transect spanning western Greenland's percolation zone. The project will achieve these objectives by drilling a combination of shallow and deep cores/boreholes at a series of sites between Swiss Camp and Crawford Point. Deep (up to 100 meters) boreholes will be drilled using hot water methods via with a drill that is being developed by the investigators. These deep boreholes will be augmented with a number of shallow cores to quantify density and provide access for temperature logging of the shallow firn thickness. The shallow cores will be drilled with an IDDO Hand Auger and Sidewinder.

    Point of Contact:

    Joel Harper, University of Montana

    Schedule: 5/10/2020 - 6/10/2020 (estimated)
  • North America: Sediment Transport Mechanisms and Geomorphic Processes Associated with Shore Ice along Cold Climate Coastlines

    This project will test the hypothesis that limited or variable shore ice cover, when compared to consistent shore ice cover, results in enhanced storm-induced coastal erosion and damage to coastal infrastructure. Cold climate coastlines are highly vulnerable to reduced winter ice cover in response to climate change. The dynamics of how reduced ice cover influences coastal evolution is poorly understood which inhibits accurate forecasting of future coastal response in cold climates. Researchers on this project hope to improve our understanding of how sediment interacts with shore ice as well as the resulting coastal landscape change. The first part of the project involves laboratory experiments aimed at studying the physics of sediment and ice interactions. The second part of the project will gather field measurements that use the laboratory measurements as a basis to investigate how cold climate coastlines naturally respond to the shore ice. Using a SIPRE Hand Auger, the researchers will collect ice core samples of 1-3 meters in length on Lake Michigan and Lake Superior to inspect debris entrained within the ice for comparison with the laboratory experiments. This research will result in a model that will help explain how reduced and variable winter shore ice cover alters the coastal landscape, which will help coastal managers proactively plan for future climate change impacts.

    Point of Contact:

    Lucas Zoet, University of Wisconsin-Madison. Ethan Theuerkauf, Michigan State University.

    Schedule: 12/01/2019 - 03/31/2020
    Equipment: SIPRE Hand Auger
  • North America: The Ecosystem Ecology of Lake Ice Loss in North-Temperate Lakes

    This research advances the growing field of winter limnology by using long-term data collected on northern lakes in Wisconsin in conjunction with a snow-removal experiment to look at under-ice algae and the implications for ice-loss on spring algae blooms. Using an IDDO Hand Auger, the researchers will collect lake ice cores through an ice thickness of up to one meter to study the biogeochemistry and habitat of lake ice.

    Point of Contact:

    Hilary Dugan, University of Wisconsin-Madison.

    Schedule: 12/01/2019 - 04/30/2020
    Equipment: IDDO Hand Auger

2020-2021 Antarctic

  • Ground Geophysics Survey of Thwaites Glacier

    This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The objectives of the project are to learn whether basal conditions allow for rapid retreat of the Thwaites Glacier grounding line or whether retreat may re-stabilize near its current grounding line. These objectives will be achieved by using dedicated ice-flow modeling to guide targeted field surveys and experiments over two seasons, and to measure the most important unknown quantities and incorporate them into the models. Numerical models will be used to generate hypotheses for basal conditions that are testable through geophysical surveys and to project future behavior of Thwaites Glacier after assimilating the resulting data. The geophysical methods include seismic, radar, gravity, and electrical surveys that together will allow for a fuller characterization of the bed. The project will conduct field surveys in areas representative of different parts of the glacier, including across the margins, near the grounding line, and along the central axis of the glacier into its catchment. The Rapid Air Movement (RAM) Drill and Small Hot Water Drill will be used to create the shot holes required for the seismic measurements.

    Point of Contact:

    Sridhar Anandakrishnan, Penn State University. Leigh Stearns, University of Kansas. Richard Alley, Penn State University. Knut Christianson, University of Washington. Lucas Zoet, University of Wisconsin

    Schedule: 11/15/2020 - 01/15/2021 (estimated)
  • Geological History Constraints on the Magnitude of Grounding Line Retreat in the Thwaites Glacier System

    This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. This project will provide a record of regional sea-level change by establishing chronologies for raised marine beaches as well as the timing and duration of periods of retreat of Thwaites Glacier during the past 10,000 years by sampling and dating bedrock presently covered by Thwaites Glacier via subglacial drilling. Together with climatic and oceanographic conditions from other records, these will provide boundary conditions for past-to-present model simulations as well as those used to predict future glacier changes under a range of climate scenarios. The project will utilize the Stampfli 2-Inch Drill and Winkie Drill to obtain subglacial bedrock from sites where ice thickness is dynamically linked to grounding-line position in the Thwaites system (specifically in the Hudson Mountains, and near Mount Murphy). Observation of significant cosmogenic-nuclide concentrations--the team will primarily measure Beryllium-10 and in situ Carbon-14--in these samples would provide direct, unambiguous evidence for past episodes of thinning linked to grounding-line retreat as well as constraints on their timing and duration.

    Point of Contact:

    Brent Goehring, Tulane University. Gregory Balco, Berkeley Geochronology Center. Brenda Hall, University of Maine. Seth Campbell, University of Maine.

    Schedule: 11/15/2020 - 01/15/2021 (estimated)
  • Early and Mid Pleistocene Climate Archives from the Allan Hills Blue Ice Area

    Bubbles of ancient air trapped in ice cores have been used to directly reconstruct atmospheric composition, and its links to Antarctic and global climate, over the last 800,000 years. Previous field expeditions to the Allan Hills Blue Ice Area, Antarctica, have recovered ice cores that extend as far back as 2.7 million years, by far the oldest polar ice samples yet recovered. These ice cores extend direct observations of atmospheric carbon dioxide and methane concentrations and indirect records of Antarctic climate into a period of Earth's climate history that represents a plausible geologic analogue to future anthropogenic climate change. Through this project, the team will return to the Allan Hills Blue Ice Area to recover additional ice cores that date to 2 million years or older. The 4-Inch Drill and Blue Ice Drill will be used to recover the ice cores. The climate records developed from these ice cores will provide new insights into the chemical composition of the atmosphere and Antarctic climate during times of comparable or even greater warmth than the present day. Project results will help answer questions about issues associated with anthropogenic change including the relationship between temperature change and the mass balance of Antarctic ice and the relationship between atmospheric greenhouse gases and global climate change.

    Point of Contact:

    John Higgins, Princeton University.

    Schedule: 11/1/2020 - 1/1/2021 (estimated)
  • Constraining West Antarctic Ice Sheet Elevation during the last Interglacial

    This project will collect a novel dataset to determine how the West Antarctic Ice Sheet (WAIS) responded to a warmer climate during the last interglacial period (~125,000 years ago) by reconstructing the glacial history at the Mt. Waesche volcano in Marie Byrd Land, Antarctica. The researchers will use the Winkie Drill to drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. Reconstructing WAIS geometry when the ice sheet was smaller than present is difficult, and data are lacking because the evidence lies beneath the present ice sheet. The scientists will use the Winkie Drill to drill through the ice sheet and recover bedrock that can be analyzed for its surface exposure history to help determine when the surface became overridden by the ice sheet. The research will provide constraints on the past maximum and minimum spatial extent of WAIS during the last glacial-interglacial cycle.

    Point of Contact:

    Matthew Zimmerer, New Mexico Institute of Mining and Technology. Jerry Mitrovica, Harvard University. Seth Campbell, University of Maine

    Schedule: 11/1/2020 - 1/1/2021 (estimated)
    Equipment: Winkie Drill

2021 Arctic

  • North America: Sediment Transport Mechanisms and Geomorphic Processes Associated with Shore Ice along Cold Climate Coastlines

    This project will test the hypothesis that limited or variable shore ice cover, when compared to consistent shore ice cover, results in enhanced storm-induced coastal erosion and damage to coastal infrastructure. Cold climate coastlines are highly vulnerable to reduced winter ice cover in response to climate change. The dynamics of how reduced ice cover influences coastal evolution is poorly understood which inhibits accurate forecasting of future coastal response in cold climates. Researchers on this project hope to improve our understanding of how sediment interacts with shore ice as well as the resulting coastal landscape change. The first part of the project involves laboratory experiments aimed at studying the physics of sediment and ice interactions. The second part of the project will gather field measurements that use the laboratory measurements as a basis to investigate how cold climate coastlines naturally respond to the shore ice. Using a SIPRE Hand Auger, the researchers will collect ice core samples of 1-3 meters in length on Lake Michigan and Lake Superior to inspect debris entrained within the ice for comparison with the laboratory experiments. This research will result in a model that will help explain how reduced and variable winter shore ice cover alters the coastal landscape, which will help coastal managers proactively plan for future climate change impacts.

    Point of Contact:

    Lucas Zoet, University of Wisconsin-Madison. Ethan Theuerkauf, Michigan State University.

    Schedule: 12/01/2020 - 03/31/2021
    Equipment: SIPRE Hand Auger

2021-2022 Antarctic

  • Ground Geophysics Survey of Thwaites Glacier

    This project contributes to the joint initiative launched by the U.S. National Science Foundation (NSF) and the U.K. Natural Environment Research Council (NERC) to substantially improve decadal and longer-term projections of ice loss and sea-level rise originating from Thwaites Glacier in West Antarctica. The objectives of the project are to learn whether basal conditions allow for rapid retreat of the Thwaites Glacier grounding line or whether retreat may re-stabilize near its current grounding line. These objectives will be achieved by using dedicated ice-flow modeling to guide targeted field surveys and experiments over two seasons, and to measure the most important unknown quantities and incorporate them into the models. Numerical models will be used to generate hypotheses for basal conditions that are testable through geophysical surveys and to project future behavior of Thwaites Glacier after assimilating the resulting data. The geophysical methods include seismic, radar, gravity, and electrical surveys that together will allow for a fuller characterization of the bed. The project will conduct field surveys in areas representative of different parts of the glacier, including across the margins, near the grounding line, and along the central axis of the glacier into its catchment. The Rapid Air Movement (RAM) Drill and Small Hot Water Drill will be used to create the shot holes required for the seismic measurements.

    Point of Contact:

    Sridhar Anandakrishnan, Penn State University. Leigh Stearns, University of Kansas. Richard Alley, Penn State University. Knut Christianson, University of Washington. Lucas Zoet, University of Wisconsin

    Schedule: 11/15/2021 - 01/15/2022 (estimated)