Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier

Title Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier
Publication Type
Journal Article
Year
2019
Author(s) Katie Miles , Evan Miles, Bryn Hubbard, Duncan Quincey, Ann Rowan, Mark Pallett
Journal/ Publication
Journal of Glaciology
Volume
65
Issue
253
Pagination
822-832
Abstract

While hot-water drilling is a well-established technique used to access the subsurface of ice masses, drilling into high-elevation (≳ 4000 m a.s.l.) debris-covered glaciers faces specific challenges. First, restricted transport capacity limits individual equipment items to a volume and mass that can be slung by small helicopters. Second, low atmospheric oxygen and pressure reduces the effectiveness of combustion, limiting a system's ability to pump and heat water. Third, thick supraglacial debris, which is both highly uneven and unstable, inhibits direct access to the ice surface, hinders the manoeuvring of equipment and limits secure sites for equipment placement. Fourth, englacial debris can slow the drilling rate such that continued drilling becomes impracticable and/or boreholes deviate substantially from vertical. Because of these challenges, field-based englacial and subglacial data required to calibrate numerical models of high-elevation debris-covered glaciers are scarce or absent. Here, we summarise our experiences of hot-water drilling over two field seasons (2017–2018) at the debris-covered Khumbu Glacier, Nepal, where we melted 27 boreholes up to 192 m length, at elevations between 4900 and 5200 m a.s.l. We describe the drilling equipment and operation, evaluate the effectiveness of our approach and suggest equipment and methodological adaptations for future use.

DOI
10.1017/jog.2019.49
File
URL
Categories Alpine/High-Altitude, Englacial Debris/Rock Glaciers, Hot Water Drilling
Citation Katie Miles , Evan Miles, Bryn Hubbard, Duncan Quincey, Ann Rowan, Mark Pallett ( 2019 ) Instruments and methods: hot-water borehole drilling at a high-elevation debris-covered glacier. Journal of Glaciology , 65 , 253 , 822-832 . doi: 10.1017/jog.2019.49
Lead Author
Katie Miles