Publications

The following list of peer-reviewed publications is from projects that received field support from the NSF Ice Drilling Program or publications authored by NSF Ice Drilling Program staff. We also maintain a Library of technical ice drilling documents.

If you are an NSF IDP supported scientist, please credit NSF IDP support in any publications or articles with the following statement "We thank the NSF Ice Drilling Program for support activities through NSF Continuing Grant 2318480."

2025

  1. Jones TR, Cuffey KM, Steig EJ, Markle BR (2025) Reply to: Limitations of ice cores in reconstructing temperature seasonality. Nature, 637, E7–E8. https://doi.org/10.1038/s41586-024-08182-6 
  2.  Laepple T, Münch T, Hirsch N, Shaw F, Horhold M (2025) Limitations of ice cores in reconstructing temperature seasonality. Nature, 637, E1–E6. https://doi.org/10.1038/s41586-024-08181-7 
  3. Riddell-Young B, Lee JE, Brook EJ, Schmitt J, Fischer H, Bauska TK, Menking JA, Iseli R, Clark JR (2025) Abrupt changes in biomass burning during the last glacial period. Nature, 637, 91-96. https://doi.org/10.1038/s41586-024-08363-3  

2024

  1. Bierman P, Mastro HM, Peteet DM, Corbett LB, Steig EJ, Halsted CT, Caffee MM, Hidy AJ, Balco G, Bennike O, Rock B (2024) Plant, insect, and fungi fossils under the center of Greenland’s ice sheet are evidence of ice-free times. Proceedings of the National Academy of Sciences, 121, 33. https://doi.org/10.1073/pnas.2407465121
  2. Braddock S, Venturelli RA, Nichols K, Moravec E, Boeckmann GV, Campbell S, Balco G, Ackert R, Small D, Johnson JS, Dunbar N, Woodward J, Mukhopadhyay S, Goehring B (2024) Lessons learned from shallow subglacial bedrock drilling campaigns in Antarctica. Annals of Glaciology, 1-11. https://doi.org/10.1017/aog.2024.12
  3. Brugger SO, Chellman NJ, Plach A, Henne PD, Stohl A, McConnell JR (2024) Pollen in polar ice implies eastern Canadian forest dynamics diverged from climate after European settlement. Geophysical Research Letters, 51, e2023GL105581. https://doi.org/10.1029/2023GL105581
  4. Chalif JI, Jongebloed UA, Osterberg EC, Koffman BG, Alexander B, Winski DA, Polashenski DJ, Stamieszkin K, Ferris DG, Kreutz KJ, Wake CP, Cole-Dai J (2024) Pollution drives multidecadal decline in subarctic methanesulfonic acid. Nature Geoscience. https://doi.org/10.1038/s41561-024-01543-w 
  5. Gabriel I, Plunkett G, Abbott PM, Behrens M, Burke A, Chellman N, Cook E, Fleitmann D, Horhold M, Hutchison W, McConnell JR, Oladottir BA, Preiser-Kapeller J, Sliwinski JT, Sugden P, Twarloh B, Sigl M (2024) Decadal-to-centennial increases of volcanic aerosols from Iceland challenge the concept of a Medieval Quiet Period. Communications Earth & Environment, 5:194, 1-18. https://doi.org/10.1038/s43247-024-01350-6
  6. Harris Stuart R, Landais A, Arnaud L, Buizert C, Capron E, Dumont M, Libois Q, Mulvaney R, Orsi A, Picard G, Prié F, Severinghaus J, Stenni B, Martinerie P (2024) On the relationship between δO2∕N2 variability and ice sheet surface conditions in Antarctica. The Cryosphere, 18, 3741-3763. https://doi.org/10.5194/tc-18-3741-2024 
  7. Hmiel B, Petrenko VV, Buizert C, Smith AM, Dyonisius MN, Place P, Yang B, Hua Q, Beaudette R, Severinghaus JP, Harth C, Weiss RF, Davidge L, Diaz M, Pacicco M, Menking JA, Kalk M, Faïn X, Adolph A, Vimont I, Murray LT (2024) Characterization of in situ cosmogenic 14CO production, retention and loss in firn and shallow ice at Summit, Greenland. The Cryosphere, 18, 3363-3382. https://doi.org/10.5194/tc-18-3363-2024
  8. Hutchison W, Sugden P, Burke A, Abbott P, PonomarevaVV, Dirksen O, Portnyagin MV, MacInnes B, Bourgeois J, Fitzhugh N, Verkerk M, Aubry TJ, Engwell SL, Svensson A, Chellman NJ, McConnell JR, Davies S, Sigl M, Plunkett G (2024) The 1831 CE mystery eruption identified as Zavaritskii caldera, Simushir Island (Kurils). Proceedings of the National Academy of Sciences, 122(1), e2416699122. https://doi.org/10.1073/pnas.2416699122 
  9. Kuwae M, Yusuke Y, Tims S, Froehlich M, Fifield KL, Aze T, Tsugeki N, Doi H, Saito Y (2024) Toward defining the Anthropocene onset using a rapid increase in anthropogenic fingerprints in global geological archives. Proceedings of the National Academy of Sciences, e2313098121, 121 (41). https://www.pnas.org/doi/abs/10.1073/pnas.2313098121 
  10. Lowry DP, Han HK, Golledge NR, Gomez N, Johnson KM, McKay RM (2024) Ocean cavity regime shift reversed West Antarctic grounding line retreat in the late Holocene. Nature Communications, 15, 3176. https://doi.org/10.1038/s41467-024-47369-3
  11. McConnell JR, Chellman NJ, Wensman SM, Plach A, Stanish C, Santibáñez PA, Brugger SO, Eckhardt S, Freitag J, Kipfstuhl S, Stohl A (2024) Hemispheric-scale heavy metal pollution from South American and Australian mining and metallurgy during the Common Era. Science of The Total Environment, 912. https://doi.org/10.1016/j.scitotenv.2023.169431
  12. McDowell IE, Keegan KM, Skiles SM, Donahue CP, Osterberg EC, Hawley RL, Marshall H-P (2024) A cold laboratory hyperspectral imaging system to map grain size and ice layer distributions in firn cores. The Cryosphere, 18, 1925–1946. https://doi.org/10.5194/tc-18-1925-2024
  13. Medley B, Neumann TA, Zwally HJ, Smith BE, Stevens CM (2022) Simulations of firn processes over the Greenland and Antarctic ice sheets: 1980-2021. The Cryosphere, 16, 3971-4011. https://doi.org/10.5194/tc-16-3971-2022 
  14. Moser DE, Thomas ER, Nehrbass-Ahles C, Eichler A, Wolff E (2024) Review article: Melt-affected ice cores for polar research in a warming world. The Cryosphere, 18, 2691-2718. https://doi.org/10.5194/tc-18-2691-2024
  15. Petrenko VV, BenZvi S, Dyonisius M, Hmiel B, Smith AM, Buizert C (2024) The potential of in situ cosmogenic 14CO in ice cores as a proxy for galactic cosmic ray flux variations. The Cryosphere, 18, 3439-3451. https://doi.org/10.5194/tc-18-3439-2024 
  16. van Dijk EJC, Jungclaus J, Sigl M, Timmreck Cm Kruger K (2024) High-frequency climate forcing causes prolonged cold periods in the Holocene. Communications Earth & Environment, 5, 242. https://doi.org/10.1038/s43247-024-01380-0
  17. Wendt KA, Nehrbass-Ahles C, Niezgoda K, Noone D, Kalk M, Menviel L, Gottschalk J, Rae JWB, Schmitt J, Fischer H, Stocker TF, Muglia J, Ferreira D, Marcott SA, Brook E, Buizert C (2024) Southern Ocean drives multidecadal atmospheric CO2 rise during Heinrich Stadials. Proceedings of the National Academy of Sciences, 121 (21) e2319652121. https://doi.org/10.1073/pnas.2319652121
  18. Zhang B, Chellman NJ, Kaplan JO, Mickley LJ, Ito T, Wang X, Wensman SM, McCrimmon D, Steffensen JP, McConnell JR, Liu P (2024) Improved biomass burning emissions from 1750 to 2010 using ice core records and inverse modeling. Nature Communications, 15, 3651. https://doi.org/10.1038/s41467-024-47864-7

2023

  1. Alt M, Puseman K, Lee CM, Pederson GT, McConnell JR, Chellman NJ, McWethy DB (2023) Organic layers preserved in ice patches: A new record of Holocene environmental change on the Beartooth Plateau, USA. The Holocene, 1-5. https://doi.org/10.1177/09596836231211877
  2. Balco G, Brown N, Nichols K, Venturelli RA, Adams J, Braddock S, Campbell S, Goehring B, Johnson JS, Rood DH, Wilcken K, Hall B, and Woodward J (2023) Reversible ice sheet thinning in the Amundsen Sea Embayment during the Late Holocene. The Cryosphere, 17, 1787-1801. https://doi.org/10.5194/tc-17-1787-2023
  3. Brugger SO, Chellman NJ, McConnell C, McConnell JR (2023) High-latitude fire activity of recent decades derived from microscopic charcoal and black carbon in Greenland ice cores. The Holocene, 33(2), 238-244. https://doi.org/10.1177/09596836221131711
  4. Buizert C, Shackleton S, Severinghaus JP, Roberts WHG, Seltzer A, Bereiter B, Kawamura K, Baggenstos D, Orsi AJ, Oyabu I, Birner B, Morgan JD, Brook EJ, Etheridge DM, Thornton D, Bertler N, Pyne RL, Mulvaney R, Mosley-Thompson E, Neff PD, and Petrenko VV (2023) The new Kr-86 excess ice core proxy for synoptic activity: West Antarctic storminess possibly linked to Intertropical Convergence Zone (ITCZ) movement through the last deglaciation. Climate of the Past, 19, 579-606. https://doi.org/10.5194/cp-19-579-2023
  5. Burke A, Innes HM, Crick L, Anchukaitis KJ, Byrne MP, Hutchison W, McConnell JR, Moore KA, Rae JWB, Sigl M, and Wilson R (2023) High sensitivity of summer temperatures to stratospheric sulfur loading from volcanoes in the Northern Hemisphere. Proceedings of the National Academy of Sciences, 120(47), e2221810120. https://doi.org/10.1073/pnas.2221810120
  6. Chesler A, Winski D, Kreutz K, Koffman B, Osterberg E, Ferris D, Thundercloud Z, Mohan J, Cole-Dai J, Wells M, Handley M, Putnam A, Anderson K, and Harmon N (2023) Non-spherical microparticle shape in Antarctica during the last glacial period affects dust volume-related metrics. Climate of the Past, 19, 477-492. https://doi.org/10.5194/cp-19-477-2023
  7. Dyonisius MN, Petrenko VV, Smith AM, Hmiel B, Neff PD, Yang B, Hua Q, Schmitt J, Shackleton SA, Buizert C, Place PF, Menking JA, Beaudette R, Harth C, Kalk M, Roop HA, Bereiter B, Armanetti C, Vimont I, Englund Michel S, Brook EJ, Severinghaus JP, Weiss RF, and McConnell JR (2023) Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic 14C production rates by muons. The Cryosphere, 17, 843-863. https://doi.org/10.5194/tc-17-843-2023
  8. Eckhardt S, Pisso I, Evangeliou N, Zwaaftink CG, Plach A, McConnell JR, Sigl M, Ruppel M, Zdanowicz C, Lim S, Chellman N, Opel T, Meyer H, Steffensen JP, Schwikowski M, Stohl A (2023) Revised historical Northern Hemisphere black carbon emissions based on inverse modeling of ice core records. Nature Communications, 14, 271. https://doi.org/10.1038/s41467-022-35660-0
  9. Epifanio JA, Brook EJ, Buizert C, Pettit EC, Edwards JS, Fegyveresi JM, Sowers TA, Severinghaus JP, and Kahle EC (2023) Millennial and orbital-scale variability in a 54 000-year record of total air content from the South Pole ice core. The Cryosphere, 17, 4837–4851. https://doi.org/10.5194/tc-17-4837-2023
  10. Faïn X, Etheridge DM, Fourteau K, Martinerie P, Trudinger CM, Rhodes RH, Chellman NJ, Langenfelds RL, McConnell JR, Curran MAJ, Brook EJ, Blunier T, Teste G, Grilli R, Lemoine A, Sturges WT, Vannière B, Freitag J, and Chappellaz J (2023) Southern Hemisphere atmospheric history of carbon monoxide over the late Holocene reconstructed from multiple Antarctic ice archives. Climate of the Past, 19, 2287-2311. https://doi.org/10.5194/cp-19-2287-2023
  11. Fang L, Jenk TM, Winski D, Kreutz K, Brooks HL, Erwin E, Osterberg E, Campbell S, Wake C, and Schwikowski M (2023) Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14C age constraints. The Cryosphere, 17, 4007–4020. https://doi.org/10.5194/tc-17-4007-2023
  12. Guillet S, Corona C, Oppenheimer C, Lavigne F, Khodri M, Ludlow F, Sigl M, Toohey M, Atkins PS, Yang Z, Muranaka T, Horikawa N, and Stoffel M (2023) Lunar eclipses illuminate timing and climate impact of medieval volcanism. Nature 616, 90–95. https://doi.org/10.1038/s41586-023-05751-z
  13. Jones TR, Cuffey KM, Roberts WHG, Markle BR, Steig EJ, Max Stevens CM, Valdes PJ, Fudge TJ, Sigl M, Hughes AG, Morris V, Vaughn BH, Garland J, Vinther BM, Rozmiarek KS, Brashear CA, and White JWC (2023) Seasonal temperatures in West Antarctica during the Holocene. Nature 613, 292-297. https://doi.org/10.1038/s41586-022-05411-8
  14. Jongebloed UA, Schauer AJ, Cole-Dai J, Larrick CG, Porter WC, Tashmim L, Zhai S, Salimi S, Edouard SR, Geng L, Alexander B (2023) Industrial-era decline in Arctic methanesulfonic acid is offset by increased biogenic sulfate aerosol. PNAS. https://doi.org/10.1073/pnas.2307587120
  15. Jongebloed UA, Schauer AJ, Cole-Dai J, Larrick CG, Wood R, Fischer TP, Carn SA, Salimi S, Edouard SR, Zhai S, Geng L, Alexander B (2023) Underestimated passive volcanic sulfur degassing implies overestimated anthropogenic aerosol forcing. Geophysical Research Letters, 50, e2022GL102061. https://doi.org/10.1029/2022GL102061
  16. Koffman B.G, Goldstein SL, Winckler G, Kaplan MR, Bolge L, Biscaye P (2023) Abrupt changes in atmospheric circulation during the Medieval Climate Anomaly and Little Ice Age recorded by Sr-Nd isotopes in the Siple Dome ice core, Antarctica. Paleoceanography and Paleoclimatology, 38, e2022PA004543. https://doi.org/10.1029/2022PA004543
  17. McDowell IE, Keegan KM, Wever N, Osterberg EC, Hawley RL, Marshall H-P (2023) Firn core evidence of two-way feedback mechanisms between meltwater infiltration and firn microstructure from the western percolation zone of the Greenland Ice Sheet. Journal of Geophysical Research: Earth Surface, 128, e2022JF006752. https://doi.org/10.1029/2022JF006752
  18. Piva SB, Barker SJ, Iverson NA, Winton VHL, Bertler NAN, Sigl M, Wilson CJN, Dunbar NW, Kurbatov AV, Carter L, Charlier BLA, Newnham RM (2023) Volcanic glass from the 1.8 ka Taupō eruption (New Zealand) detected in Antarctic ice at ~ 230 CE. Scientific Reports, 13, 16720. https://doi.org/10.1038/s41598-023-42602-3
  19. Plunkett G, Sigl M, McConnell JR, Pilcher JR, and Chellman NJ (2023) The significance of volcanic ash in Greenland ice cores during the Common Era. Quaternary Science Reviews, 301, 107936, 1-24. https://doi.org/10.1016/j.quascirev.2022.107936
  20. Riddell-Young B, Rosen J, Brook E, Buizert C, Martin K, Lee J, Edwards J, Muhl M, Schmitt J, Fischer H, and Blunier T (2023) Atmospheric methane variability through the Last Glacial Maximum and deglaciation mainly controlled by tropical sources. Nature Geoscience. https://doi.org/10.1038/s41561-023-01332-x
  21. Sinnl G, Adolphi F, Christl M, Welten KC, Woodruff T, Caffee M, Svensson A, Muscheler R, and Rasmussen SO (2023) Synchronizing ice-core and U ∕ Th timescales in the Last Glacial Maximum using Hulu Cave 14C and new 10Be measurements from Greenland and Antarctica. Climate of the Past, 19, 1153-1175. https://doi.org/10.5194/cp-19-1153-2023
  22. Stevens CM, Lilien DA, Conway H, Fudge TJ, Koutnik MR, Waddington ED (2023) A new model of dry firn-densification constrained by continuous strain measurements near South Pole. Journal of Glaciology, 69(278), 2099-2113. https://doi.org/10.1017/jog.2023.87  
  23. Thomas ER, Vladimirova DO, Tetzner DR, Emanuelsson BD, Chellman N, Dixon DA, Goosse H, Grieman MM, King ACF, Sigl M, Udy DG, Vance TR, Winski DA, Winton VHL, Bertler NAN, Hori A, Laluraj CM, McConnell JR, Motizuki Y, Takahashi K, Motoyama H, Nakai Y, Schwanck F, Simões JC, Lindau FGL, Severi M, Traversi R, Wauthy S, Xiao C, Yang J, Mosely-Thompson E, Khodzher TV, Golobokova LP, and Ekaykin AA (2023) Ice core chemistry database: an Antarctic compilation of sodium and sulfate records spanning the past 2000 years. Earth System Science Data, 15, 2517-2532. https://doi.org/10.5194/essd-15-2517-2023
  24. Zhai S, Swanson W, McConnell JR, Chellman N, Opel T, Sigl M, Meyer H, Wang X, Jaeglé L, Stutz J, Dibb JE, Fujita K, Alexander B (2023) Implications of snowpack reactive bromine production for Arctic ice core bromine preservation. Journal of Geophysical Research: Atmospheres, 128, e2023JD039257. https://doi.org/10.1029/2023JD039257

2022

  1. Banerjee A, Yeung LY, Murray LT, Tie X, Tierney JE, Legrande AN (2022) Clumped-isotope constraint on upper-tropospheric cooling during the Last Glacial Maximum. AGU Advances, 3, e2022AV000688, 1-15. https://doi.org/10.1029/2022AV000688
  2. Bergelin M, Putkonen J, Balco G, Morgan D, Corbett LB, and Bierman PR (2022) Cosmogenic nuclide dating of two stacked ice masses: Ong Valley, Antarctica. The Cryosphere, 16, 2793-2817. https://doi.org/10.5194/tc-16-2793-2022
  3. Briner JP, Walcott CK, Schaefer JM, Young NE, MacGregor JA, Poinar K, Keisling BA, Anandakrishnan S, Albert MR, Kuhl T, and Boeckmann G (2022) Drill-site selection for cosmogenic-nuclide exposure dating of the bed of the Greenland Ice Sheet. The Cryosphere, 16, 3933–3948. https://doi.org/10.5194/tc-16-3933-2022
  4. Cao Y, Jiang Z, Alexander B, Cole-Dai J, Savarino J, Erbland J, and Geng L (2022) On the potential fingerprint of the Antarctic ozone hole in ice-core nitrate isotopes: a case study based on a South Pole ice core. Atmospheric Chemistry and Physics, 22, 13407-13422. https://doi.org/10.5194/acp-22-13407-2022
  5. Davidge L, Steig EJ, and Schauer AJ (2022) Improving continuous-flow analysis of triple oxygen isotopes in ice cores: insights from replicate measurements. Atmospheric Measurement Techniques, 15, 7337-7351. https://doi.org/10.5194/amt-15-7337-2022
  6. Dodge SE, Zoet LK, Rawling III JE, Theuerkauf EJ, Hansen DD (2022) Transport properties of fast ice within the nearshore. Coastal Engineering, 177, 104176. https://doi.org/10.1016/j.coastaleng.2022.104176
  7. Faïn X, Rhodes RH, Place P, Petrenko VV, Fourteau K, Chellman N, Crosier E, McConnell JR, Brook EJ, Blunier T, Legrand M, Chappellaz J (2022) Northern Hemisphere atmospheric history of carbon monoxide since preindustrial times reconstructed from multiple Greenland ice cores. Climate of the Past, 18, 631-647, https://doi.org/10.5194/cp-18-631-2022
  8. Hu J, Yan Y, Yeung LY, and Dee SG (2022) Sublimation origin of negative deuterium excess observed in snow and ice samples from McMurdo Dry Valleys and Allan Hills Blue Ice Areas, East Antarctica. Journal of Geophysical Research: Atmospheres, 127, e2021JD035950. https://doi.org/10.1029/2021JD035950
  9. Johnson JS, Venturelli RA, Balco G, Allen CS, Braddock S, Campbell S, Goehring BM, Hall BL, Neff PD, Nichols KA, Rood DH, Thomas ER, and Woodward J (2022) Review article: Existing and potential evidence for Holocene grounding line retreat and readvance in Antarctica. The Cryosphere, 16, 1543-1562. https://doi.org/10.5194/tc-16-1543-2022
  10. Kopec BG, Feng X, Osterberg EC, and Posmentier ES (2022) Climatological significance of δD-δ18O line slopes from precipitation, snow pits, and ice cores at Summit, Greenland. Journal of Geophysical Research: Atmospheres, 127, e2022JD037037. https://doi.org/10.1029/2022JD037037
  11. Markle BR and Steig E J (2022) Improving temperature reconstructions from ice-core water-isotope records. Climate of the Past, 18, 1321-1368. https://doi.org/10.5194/cp-18-1321-2022
  12. Menking JA, Shackleton SA, Bauska TK, Buffen AM, Brook EJ, Barker S, Severinghaus JP, Dyonisius MN, Petrenko VV (2022) Multiple carbon cycle mechanisms associated with the glaciation of Marine Isotope Stage 4. Nature Communications, 13, 5443. https://doi.org/10.1038/s41467-022-33166-3
  13. Morgan JD, Buizert C, Fudge TJ, Kawamura K, Severinghaus JP, Trudinger CM (2022) Gas isotope thermometry in the South Pole and Dome Fuji ice cores provides evidence for seasonal rectification of ice core gas records. The Cryosphere, 16, 2947-2966. https://doi.org/10.5194/tc-16-2947-2022
  14. Oster S, and Albert M (2022) Thermal conductivity of polar firn. Journal of Glaciology, 1-8. https://doi.org/10.1017/jog.2022.28
  15. Rennermalm Å, Hock R, Covi F, Xiao J, Corti G, Kingslake J, Leidman SZ, Miège C, Macferrin M, Machguth H, Osterberg E, Kameda T, McConnell J (2022) Shallow firn cores 1989–2019 in southwest Greenland's percolation zone reveal decreasing density and ice layer thickness after 2012. Journal of Glaciology, 68(269), 431-442. https://doi.org/10.1017/jog.2021.102
  16. Shin J, Ahn J, Chowdhry Beeman J, Lee H-G, Seo JM, Brook EJ (2022) Millennial variations in atmospheric CO2 during the early Holocene (11.7–7.4 ka). Climate of the Past, 18, 2063-2075. https://cp.copernicus.org/articles/18/2063/2022/
  17. Sigl M, Toohey M, McConnell JR, Cole-Dai J, and Severi M (2022) Volcanic stratospheric sulfur injections and aerosol optical depth during the Holocene (past 11 500 years) from a bipolar ice-core array. Earth System Science Data, 14, 3167-3196. https://doi.org/10.5194/essd-14-3167-2022
  18. Sipes K, Paul R, Fine A, Li P, Liang R, Boike J, Onstott TC, Vishnivetskaya TA, Schaeffer S, Lloyd KG (2022) Permafrost Active Layer Microbes From Ny Ålesund, Svalbard (79°N) Show Autotrophic and Heterotrophic Metabolisms With Diverse Carbon-Degrading Enzymes. Frontiers in Microbiology, 12:757812. https://doi.org/10.3389/fmicb.2021.757812
  19. Sipes K, Paul R, Onstott TC, Vishnivetskaya TA, Lloyd KG (2022) Draft Genome Sequences of 10 Pseudomonas sp. Isolates from the Active Layer of Permafrost in Ny Ålesund, Svalbard, Norway. Microbiology Resource Announcements, 11(6). https://doi.org/10.1128/mra.00201-22
  20. Wensman SM, Shiel AE, McConnell JR (2022) Lead isotopic fingerprinting of 250-years of industrial era pollution in Greenland ice. Anthropocene, 38, 100340. https://doi.org/10.1016/j.ancene.2022.100340
  21. Yan Y, Banerjee A, Murray LT, Tie X, and Yeung LY (2022) Tropospheric ozone during the Last Interglacial. Geophysical Research Letters, 49, e2022GL101113. https://doi.org/10.1029/2022GL101113

2021

  1. Abbott PM, Plunkett G, Corona C, Chellman NJ, McConnell JR, Pilcher JR, Stoffel M, Sigl M (2021) Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of volcanic events in the 1450s CE and assessing the eruption's climatic impact. Climate of the Past, 17, 565-585. https://doi.org/10.5194/cp-17-565-2021
  2. Abbott PM, Niemeier U, Timmreck C, Riede F, McConnell JR, Severi M, Fischer H, Svensson A, Toohey M, Reinig F, SigL (2021) Volcanic climate forcing preceding the inception of the Younger Dryas: Implications for tracing the Laacher See eruption. Quaternary Science Reviews, 274. https://doi.org/10.1016/j.quascirev.2021.107260
  3. Anthony RE, Ringler AT, DuVernois M, Anderson KR, Wilson DC (2021) Six Decades of Seismology at South Pole, Antarctica: Current Limitations and Future Opportunities to Facilitate New Geophysical Observations. Seismological Research Letters, 92(5): 2718–2735. https://doi.org/10.1785/0220200448
  4. Bauska TK, Marcott SA, Brook EJ (2021) Abrupt changes in the global carbon cycle during the last glacial period. Nature Geoscience, 14, 91–96. https://doi.org/10.1038/s41561-020-00680-2
  5. Boeckmann G, Gibson CJ, Kuhl TW, Moravec E, Johnson JA, Meulemans Z, Slawny KR (2021) Adaptation of the Winkie Drill for subglacial bedrock sampling. Annals of Glaciology, 62, (84), 109-117. https://doi.org/10.1017/aog.2020.73
  6. Buizert C, Fudge TJ, Roberts WHG, Steig EJ, Sherriff-Tadano S, Ritz C, Lefebvre E, Edwards J, Kawamura K, Oyabu I, Motoyama H, Kahle EC, Jones TR, Abe-Ouchi A, Obase T, Martin C, Corr H, Severinghaus JP, Beaudette R, Epifanio JA, Brook EJ, Martin K, Chappellaz J, Aoki S, Nakazawa T, Sowers TA, Alley RB, Ahn J, Sigl M, Severi M, Dunbar NW, Svensson A, Fegyveresi JM, He C, Liu Z, Zhu J, Otto-Bliesner BL, Lipenkov VY, Kageyama M, Schwander J (2021) Antarctic surface temperature and elevation during the Last Glacial Maximum. Science, 372(6546), 1097-1101. https://doi.org/10.1126/science.abd2897
  7. Casto-Boggess LD, Golozar M, Butterworth AL, Mathies RA (2021) Optimization of Fluorescence Labeling of Trace Analytes: Application to Amino Acid Biosignature Detection with Pacific Blue. Analytical Chemistry, 1-8. https://doi.org/10.1021/acs.analchem.1c04465
  8. Chellman NJ, Pederson G, Lee CM, McWethy DB, Puseman K, Stone JR, Brown SR, and McConnell JR (2021) High elevation ice patch documents Holocene climate variability in the northern Rocky Mountains. Quaternary Science Advances, 3, 1-8. https://doi.org/10.1016/j.qsa.2020.100021
  9. Cole-Dai J, Ferris DG, Kennedy JA, Sigl M, McConnell JR, Fudge TJ, Geng L, Maselli OJ, Taylor KC, Souney JM (2021) Comprehensive record of volcanic eruptions in the Holocene (11,000 years) from the WAIS Divide, Antarctica ice core. Journal of Geophysical Research: Atmospheres, 126, e2020JD032855. https://doi.org/10.1029/2020JD032855
  10. D'Andrilli J, and McConnell J (2021) Polar ice core organic matter signatures reveal past atmospheric carbon composition and spatial trends across ancient and modern timescales. Journal of Glaciology, 67(266), 1028-1042. https://doi.org/10.1017/jog.2021.51
  11. Gerbi C, Mills S, Clavette R, Campbell S, Bernsen S, Clemens-Sewall D, Lee I, Hawley R, Kreutz K, and Hruby K (2021) Microstructures in a shear margin: Jarvis Glacier, Alaska. Journal of Glaciology, 1-14. https://doi.org/10.1017/jog.2021.62
  12. Gibson CJ, Boeckmann G, Meulemans Z, Kuhl TW, Koehler J, Johnson JA, Slawny KR (2021) RAM-2 Drill system development: an upgrade of the Rapid Air Movement Drill. Annals of Glaciology, 62, (84), 99-108. https://doi.org/10.1017/aog.2020.72
  13. Goddard PB, Tabor CR, Jones TR (2021) Utilizing Ice Core and Climate Model Data to Understand Seasonal West Antarctic Variability. Journal of Climate, 1-55. https://doi.org/10.1175/JCLI-D-20-0822.1
  14. Goodge JW, Severinghaus JP, Johnson JA, Tosi D, Bay R (2021) Deep ice drilling, bedrock coring and dust logging with the Rapid Access Ice Drill (RAID) at Minna Bluff, Antarctica. Annals of Glaciology, 62, (85-86), 324-339. https://doi.org/10.1017/aog.2021.13
  15. Hillebrand T, Conway H, Koutnik M, Martín C, Paden J, Winberry J (2021) Radio-echo sounding and waveform modeling reveal abundant marine ice in former rifts and basal crevasses within Crary Ice Rise, Antarctica. Journal of Glaciology, 67(264), 641-652. https://doi.org/10.1017/jog.2021.17
  16. Humphrey N, Harper J, and Meierbachtol T (2021) Physical limits to meltwater penetration in firn. Journal of Glaciology, 67(265), 952-960. https://doi.org/10.1017/jog.2021.44
  17. Johnson JA, Kuhl TW, Boeckmann G, Gibson CJ, Jetson J, Meulemans Z, Slawny KR, Souney JM (2021) Drilling operations for the South Pole Ice Core (SPICEcore) project. Annals of Glaciology, 62, (84), 75-88. https://doi.org/10.1017/aog.2020.64
  18. Kahle EC, Steig EJ, Jones TR, Fudge TJ, Koutnik MR, Morris VA, Vaughn BR, Schauer AJ, Stevens CM, Conway H, Waddington ED, Buizert C, Epifanio J, White JWC (2021) Reconstruction of temperature, accumulation rate, and layer thinning from an ice core at South Pole, using a statistical inverse method. Journal of Geophysical Research: Atmospheres, 126, e2020JD033300. https://doi.org/10.1029/2020JD033300
  19. Koffman BG, Goldstein SL, Winckler G, Kaplan MR, Kreutz KJ, Bolge L, Bory A, Biscaye P (2021) Late Holocene dust provenance at Siple Dome, Antarctica. Quaternary Science Reviews, 274, 107271. https://doi.org/10.1016/j.quascirev.2021.107271
  20. Kuhl TW, Gibson CJ, Johnson JA, Boeckmann G, Moravec E, Slawny KR (2021) Agile Sub-Ice Geological (ASIG) Drill development and Pirrit Hills field project. Annals of Glaciology, 62, (84), 53-66. https://doi.org/10.1017/aog.2020.59
  21. Lewis G, Osterberg E, Hawley R, Marshall HP, Meehan T, Graeter K, McCarthy F, Overly T, Thundercloud Z, Ferris D, Koffman BG, Dibb J (2021) Atmospheric blocking drives recent albedo change across the western Greenland ice sheet percolation zone. Geophysical Research Letters, 48, e2021GL092814. https://doi.org/10.1029/2021GL092814
  22. Liu P, Kaplan J, Mickley LJ, Li Y, Chellman NJ, Arienzo MM, Kodros JK, Pierce JR, Sigl M, Freitag J, Mulvaney R, Curran MAJ, McConnell JR (2021) Improved estimates of preindustrial biomass burning reduce the magnitude of aerosol climate forcing in the Southern Hemisphere. Science Advances, 7(22), eabc1379. https://doi.org/10.1126/sciadv.abc1379
  23. McConnell JR, Chellman NJ, Mulvaney R, Eckhardt S, Stohl A, Plunkett G, Kipfstuhl S, Freitag J, Isaksson E, Gleason KE, Brugger SO, McWethy DB , Abram NJ, Liu P, Aristarain AJ (2021) Hemispheric black carbon increase after the 13th-century Māori arrival in New Zealand. Nature 598, 82–85. https://doi.org/10.1038/s41586-021-03858-9
  24. Osman MB, Coats S, Das SB, McConnell JR, Chellman N (2021) North Atlantic jet stream projections in the context of the past 1,250 years. Proceedings of the National Academy of Sciences Sep 2021, 118 (38) e2104105118. https://doi.org/10.1073/pnas.2104105118
  25. Osman MB, Smith BE, Trusel LD, Das SB, McConnell JR, Chellman N, Arienzo M, Sodemann H (2021) Abrupt Common Era hydroclimate shifts drive west Greenland ice cap change. Nature Geoscience. https://doi.org/10.1038/s41561-021-00818-w
  26. Qiao J, Colgan W, Jakobs G, and Nielsen S (2021) High-Resolution Tritium Profile in an Ice Core from Camp Century, Greenland. Environmental Science & Technology Article. https://doi.org/10.1021/acs.est.1c01975
  27. Rennermalm Å, Hock R, Covi F, Xiao J, Corti G, Kingslake J, Leidman SZ, Miege C, Macferrin M, Machguth H, Osterberg E, Kameda T, McConnell J (2021) Shallow firn cores 1989–2019 in southwest Greenland's percolation zone reveal decreasing density and ice layer thickness after 2012. Journal of Glaciology, 1-12. https://doi.org/10.1017/jog.2021.102
  28. Shackleton S, Menking JA, Brook E, Buizert C, Dyonisius MN, Petrenko VV, Baggenstos D, Severinghaus JP (2021) Evolution of mean ocean temperature in Marine Isotope Stage 4. Climate of the Past, 17, 2273-2289. https://doi.org/10.5194/cp-17-2273-2021
  29. Souney J, Twickler M, Aydin M, Steig E, Fudge T, Street L, Nicewonger MR, Kahle EC, Johnson JA, Kuhl TW, Casey KA, Fegyveresi JM, Nunn RM, Hargreaves G (2021) Core handling, transportation and processing for the South Pole ice core (SPICEcore) project. Annals of Glaciology, 1-13. https://doi.org/10.1017/aog.2020.80
  30. Steig EJ, Jones TR, Schauer AJ, Kahle EC, Morris VA, Vaughn BH, Davidge L, White JWC (2021) Continuous-Flow Analysis of δ17O, δ18O, and δD of H2O on an Ice Core from the South Pole. Frontiers in Earth Science, 9:640292, 1-14. https://doi.org/10.3389/feart.2021.640292
  31. The IceCube Collaboration (2021) Design, performance, and analysis of a measurement of optical properties of Antarctic ice below 400 nm. In proceedings of “37th International Cosmic Ray Conference (ICRC 2021) July 12-23, 2021 Online – Berlin, Germany”. Proceedings of Science. arXiv:2107.11809v1
  32. Vandecrux B, Colgan W, Solgaard AM, Steffensen JP, Karlsson NB (2021) Firn Evolution at Camp Century, Greenland: 1966–2100. Frontiers in Earth Science, 9, 1-67. https://www.frontiersin.org/article/10.3389/feart.2021.578978
  33. Winski DA, Osterberg EC, Kreutz KJ, Ferris DG, Cole‐Dai J, Thundercloud Z, Huang J, Alexander B, Jaeglé L, Kennedy JA, Larrick C, Kahle EC, Steig EJ, Jones TR (2021) Seasonally‐Resolved Holocene Sea Ice Variability Inferred from South Pole Ice Core Chemistry. Geophysical Research Letters, 48, e2020GL091602. https://doi.org/10.1029/2020GL091602
  34. Zhai S, Wang X, McConnell JR, Geng L, Cole-Dai J, Sigl M, Chellman N, Sherwen T, Pound R, Fujita K, Hattori S, Moch JM, Zhu L, Evans M, Legrand M, Liu P, Pasteris D, Chan Y-C, Murray LT, Alexander B (2021) Anthropogenic impacts on tropospheric reactive chlorine since the preindustrial. Geophysical Research Letters, 48, e2021GL093808. https://doi.org/10.1029/2021GL093808

2020

  1. Abbott PM, Plunkett G, Corona C, Chellman NJ, McConnell JR, Pilcher JR, Stoffel M, and Sigl M (2020) Cryptotephra from the Icelandic Veiðivötn 1477 CE eruption in a Greenland ice core: confirming the dating of 1450s CE volcanic events and assessing the eruption's climatic impact. Climate of the Past. https://doi.org/10.5194/cp-2020-104
  2. Aydin M, Britten GL, Montzka SA, Buizert C, Primeau FW, Petrenko VV, Battle MO, Nicewonger MR, Patterson J, Hmiel B, Saltzman ES (2020) Anthropogenic impacts on atmospheric carbonyl sulfide since the 19th century inferred from polar firn air and ice core measurements. Journal of Geophysical Research: Atmospheres, 125, e2020JD033074. https://doi.org/10.1029/2020JD033074
  3. Blong RJ and Kurbatov AV (2020) Steps and missteps on the path to a 1665-1668 CE date for the VEI 6 eruption of Long Island, Papua New Guinea. Journal of Volcanology and Geothermal Research, 395, 106828. https://doi.org/10.1016/j.jvolgeores.2020.106828
  4. Chellman NJ, Pederson GT, Lee CM, McWethy DB, Puseman K, Stone JR, Brown SR, McConnell JR (2020) High elevation ice patch documents Holocene climate variability in the northern Rocky Mountains. Quaternary Science Advances, 3, 1-8. https://doi.org/10.1016/j.qsa.2020.100021
  5. Clyne ER, Sridhar Anandakrishnan S, Muto A, Alley RB, Voigt DE (2020) Interpretation of topography and bed properties beneath Thwaites Glacier, West Antarctica using seismic reflection methods. Earth and Planetary Science Letters, 550, 116543. https://doi.org/10.1016/j.epsl.2020.116543
  6. Dyonisius MN, Petrenko VV, Smith AM, Hua Q, Yang B, Schmitt J, Beck J, Seth B, Bock M, Hmiel B, Vimont I, Menking JA, Shackleton SA, Baggenstos D, Bauska TK, Rhodes RH, Sperlich P, Beaudette R, Harth C, Kalk M, Brook EJ, Fischer H, Severinghaus JP, Weiss RF (2020) Old carbon reservoirs were not important in the deglacial methane budget. Science, 367, 907-910. https://doi.org/10.1126/science.aax0504
  7. Epifanio JA, Brook EJ, Buizert C, Edwards JS, Sowers TA, Kahle EC, Severinghaus JP, Steig EJ, Winski DA, Osterberg EC, Fudge TJ, Aydin M, Hood E, Kalk M, Kreutz KJ, Ferris DG, and Kennedy JA (2020) The SP19 chronology for the South Pole Ice Core – Part 2: gas chronology, Δage, and smoothing of atmospheric records. Climate of the Past, 16, 2431-2444. https://doi.org/10.5194/cp-16-2431-2020
  8. Fudge TJ, Lilien DA, Koutnik M, Conway H, Stevens CM, Waddington ED, Steig EJ, Schauer AJ, Holschuh N (2020) Advection and non-climate impacts on the South Pole Ice Core. Climate of the Past, 16, 819-832. https://doi.org/10.5194/cp-16-819-2020
  9. Hmiel B, Petrenko VV, Dyonisius MN, Buizert C, Smith AM, Place PF, Harth C, Beaudette R, Hua Q, Yang B, Vimont I, Michel SE, Severinghaus JP, Etheridge D, Bromley T, Schmitt J, Faïn X, Weiss RF, Dlugokencky E (2020) Preindustrial 14CH4 indicates greater anthropogenic fossil CH4 emissions. Nature, 578, 409-413. https://doi.org/10.1038/s41586-020-1991-8
  10. McDowell IE, Albert MR, Lieblappen SA, Keegan KM (2020) Local Weather Conditions Create Structural Differences between Shallow Firn Columns at Summit, Greenland and WAIS Divide, Antarctica. Atmosphere, 11(12):1370. https://doi.org/10.3390/atmos11121370
  11. Menking JA, Brook EJ, Schilt A, Shackleton S, Dyonisius M, Severinghaus JP, and Petrenko VV (2020) Millennial‐scale changes in terrestrial and marine nitrous oxide emissions at the onset and termination of Marine Isotope Stage 4. Geophysical Research Letters, 47, e2020GL089110. https://doi.org/10.1029/2020GL089110
  12. Miller O, Solomon DK, Miege C, Koenig L, Forster R, Schmerr N, Ligtenberg SRM, Legchenko A, Voss CI, Montgomery L, McConnell JR (2020) Hydrology of a perennial firn aquifer in southeast Greenland: An overview driven by field data. Water Resources Research, 56, e2019WR026348. https://doi.org/10.1029/2019WR026348
  13. Nicewonger MR, Aydin M, Prather MJ and Saltzman ES (2020) Extracting a history of global fire emissions for the past millennium from ice core records of acetylene, ethane, and methane. Journal of Geophysical Research: Atmospheres, 125, e2020JD032932. https://doi.org/10.1029/2020JD032932
  14. Nicewonger MR, Aydin M, Prather MJ and Saltzman ES (2020) Reconstruction of paleofire emissions over the past millennium from measurements of ice core acetylene. Geophysical Research Letters 47, e2019GL085101. https://doi.org/10.1029/2019GL085101
  15. Plunkett G, Sigl M, Pilcher JR, McConnell JR, Chellman N, Steffensen J, Büntgen U (2020) Smoking guns and volcanic ash: the importance of sparse tephras in Greenland ice cores. Polar Research, 39. https://doi.org/10.33265/polar.v39.3511
  16. Rongen M, Bay RC, and Blot S (2020) Observation of an optical anisotropy in the deep glacial ice at the geographic South Pole using a laser dust logger. The Cryosphere, 14, 2537-2543. https://doi.org/10.5194/tc-14-2537-2020
  17. Shackleton S, Baggenstos D, Menking JA, Dyonisius MN, Bereiter B, Bauska TK, Rhodes RH, Brook EJ, Petrenko VV, McConnell JR, Kellerhals T, Haberli M, Schmitt J, Fischer H, Severinghaus JP (2020) Global ocean heat content in the Last Interglacial. Nature Geoscience, 13, 77-81. https://doi.org/10.1038/s41561-019-0498-0
  18. Smith VC, Costa A, Aguirre-Díaz G, Pedrazzi D, Scifo A, Plunkett G, Poret M, Tournigand P-Y, Miles D, Dee MW, McConnell JR, Sunyé-Puchol I, Harris PD, Sigl M, Pilcher JR, Chellman N, Gutiérrez E (2020) The magnitude and impact of the 431 CE Tierra Blanca Joven eruption of Ilopango, El Salvador. Proceedings of the National Academy of Sciences, 202003008. https://doi.org/10.1073/pnas.2003008117
  19. Spector P, Stone J, Balco G, Hillebrand T, Thompson M, Black T (2020) Miocene to Pleistocene glacial history of West Antarctica inferred from Nunatak geomorphology and cosmogenic-nuclide measurements on bedrock surfaces. American Journal of Science, Oct 2020, 320 (8), 637-676. https://doi.org/10.2475/10.2020.01
  20. Stevens CM, Verjans V, Lundin JMD, Kahle EC, Horlings AN, Horlings BI, and Waddington ED (2020) The Community Firn Model (CFM) v1.0. Geoscientific Model Development, 13, 4355-4377. https://doi.org/10.5194/gmd-13-4355-2020
  21. Vandecrux B, Fausto R, van As D, Colgan W, Langen P, Haubner K, Ingeman-Nielsen T, Heilig A, Stevens CM, MacFerrin M, Niwano M, Steffen K, Box J (2020) Firn cold content evolution at nine sites on the Greenland ice sheet between 1998 and 2017. Journal of Glaciology, 66(258), 591-602. https://doi.org/10.1017/jog.2020.30
  22. Winsor K, Swanger KM, Babcock E, Valletta RD, and Dickson JL (2020) Rock glacier characteristics serve as an indirect record of multiple alpine glacier advances in Taylor Valley, Antarctica. The Cryosphere, 14, 1-16, https://doi.org/10.5194/tc-14-1-2020

2019

  1. Aarons SM, Aciego SM, McConnell JR, Delmonte B, Baccolo G (2019) Dust transport to the Taylor Glacier, Antarctica, during the last interglacial. Geophysical Research Letters, 46, 2261- 2270. https://doi.org/10.1029/2018GL081887
  2. Arienzo MM, McConnell JR, Chellman N, and Kipfstuhl S (2019) Method for Correcting Continuous Ice-Core Elemental Measurements for Under-Recovery. Environmental Science & Technology, 1-8. http://dx.doi.org/10.1021/acs.est.9b00199
  3. Baker I (2019) Microstructural characterization of snow, firn and ice. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377, 2146. https://doi.org/10.1098/rsta.2018.0162
  4. Burke A, Moore KA, Sigl M, Nita DC, McConnell JR, Adkins JF (2019) Stratospheric eruptions from tropical and extra-tropical volcanoes constrained using high-resolution sulfur isotopes in ice cores. Earth and Planetary Science Letters, 521, 113-119. https://doi.org/10.1016/j.epsl.2019.06.006
  5. Cooley J, Winberry P, Koutnik M, Conway H (2019) Tidal and spatial variability of flow speed and seismicity near the grounding zone of Beardmore Glacier, Antarctica. Annals of Glaciology, 60(79), 37-44. https://doi.org/10.1017/aog.2019.14
  6. Fegyveresi J, Alley R, Voigt D, Fitzpatrick J, Wilen L (2019) Instruments and methods: A case study of ice core bubbles as strain indicators. Annals of Glaciology, 60(78), 8-19. https://doi.org/10.1017/aog.2018.23
  7. Fegyveresi JM, Fudge TJ, Ferris DG, Winski DA, Alley RB (2019) Visual Observations and Stratigraphy of the South Pole Ice Core (SPICEcore): A Preliminary Holocene (~10.2 ka) Accumulation Record and Depth-Age Chronology. ERDC/CRREL TR-19-10, 1-44. http://dx.doi.org/10.21079/11681/33378
  8. Hartman LH, Kurbatov AV, Winski DA, Cruz-Uribe AM, Davies SM, Dunbar NW, Iverson NA, Aydin M, Fegyveresi JM, Ferris DG, Fudge TJ, Osterberg EC, Hargreaves GM, and Yates MG (2019) Volcanic glass properties from 1459 C.E. volcanic event in South Pole ice core dismiss Kuwae caldera as a potential source. Scientific Reports, 9:14437, 1-7. https://doi.org/10.1038/s41598-019-50939-x
  9. Karlsson NB, Colgan WT, Binder D, Machguth H, Abermann J, Hansen K, Pedersen AO (2019) Ice-penetrating radar survey of the subsurface debris field at Camp Century, Greenland. Cold Regions Science and Technology, 165, 1-13. https://doi.org/10.1016/j.coldregions.2019.102788
  10. Lee I, Hawley R, Bernsen S, Campbell S, Clemens-Sewall D, Gerbi C, and Hruby K (2019) A novel tilt sensor for studying ice deformation: Application to streaming ice on Jarvis Glacier, Alaska. Journal of Glaciology, 1-9. https://doi.org/10.1017/jog.2019.84
  11. Lee MJ, Kyle PR, Iverson NA, Lee JI, Han Y (2019) Rittmann volcano, Antarctica as the source of a widespread 1252±2 CE tephra layer in Antarctica ice. Earth and Planetary Science Letters, 521, 169-176. https://doi.org/10.1016/j.epsl.2019.06.002
  12. Lewis G, Osterberg E, Hawley R, Marshall HP, Meehan T, Graeter K, McCarthy F, Overly T, Thundercloud Z, and Ferris D (2019) Recent precipitation decrease across the western Greenland ice sheet percolation zone. The Cryosphere, 13, 2797–2815. https://doi.org/10.5194/tc-13-2797-2019
  13. McConnell JR, Chellman NJ, Wilson AI, Stohl A, Arienzo MM, Eckhardt S, Fritzsche D, Kipfstuhl S, Opel T, Place PF, Steffensen JP(2019) Pervasive Arctic lead pollution suggests substantial growth in medieval silver production modulated by plague, climate, and conflict. Proceedings of the National Academy of Sciences, 1-6. https://doi.org/10.1073/pnas.1904515116
  14. Menking JA, Brook EJ, Shackleton SA, Severinghaus JP, Dyonisius MN, Petrenko V, McConnell JR, Rhodes RH, Bauska TK, Baggenstos D, Marcott S, and Barker S (2019) Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier. Climate of the Past, 15, 1537-1556, https://doi.org/10.5194/cp-15-1537-2019
  15. Osman MB, Das SB, Trusel LD, Evans MJ, Fischer H, Grieman MM, Kipfstuhl S, McConnell JR, Saltzman ES (2019) Industrial-era decline in subarctic Atlantic productivity. Nature, 569, 551–555. https://doi.org/10.1038/s41586-019-1181-8
  16. Shackleton S, Bereiter B, Baggenstos D, Bauska TK, Brook EJ, Marcott SA, Severinghaus JP (2019) Is the noble gas‐based rate of ocean warming during the Younger Dryas overestimated?. Geophysical Research Letters, 46. https://doi.org/10.1029/2019GL082971
  17. Sommers P, Porazinska DL, Darcy JL, Zamora F, Fountain AG, Schmidt SK (2019) Experimental cryoconite holes as mesocosms for studying community ecology. Polar Biology, 42, 1973-1984. https://doi.org/10.1007/s00300-019-02572-7
  18. Swanger KM, Babcock E, Winsor K, Valletta RD (2019) Rock glaciers in Pearse Valley, Antarctica record outlet and alpine glacier advance from MIS 5 through the Holocene. Geomorphology, 336, 40-51. https://doi.org/10.1016/j.geomorph.2019.03.019
  19. Winski DA, Fudge TJ, Ferris DG, Osterberg EC, Fegyveresi JM, Cole-Dai J, Thundercloud Z, Cox TS, Kreutz KJ, Ortman N, Buizert C, Epifanio J, Brook EJ, Beaudette R, Severinghaus J, Sowers T, Steig EJ, Kahle EC, Jones TR, Morris V, Aydin M, Nicewonger MR, Casey KA, Alley RB, Waddington ED, Iverson NA, Dunbar NW, Bay RC, Souney JM, Sigl M and McConnell JR (2019) The SP19 chronology for the South Pole Ice Core -- Part 1: volcanic matching and annual layer counting. Climate of the Past, 15(5), 1793-1808. https://doi.org/10.5194/cp-15-1793-2019
  20. Yan Y, Bender ML, Brook EJ, Clifford HM, Kemeny PC, Kurbatov AV, Mackay S, Mayewski PA, Ng J, Severinghaus JP, and Higgins JA (2019) Two-million-year-old snapshots of atmospheric gases from Antarctic ice. Nature, 574, 663–666. https://doi.org/10.1038/s41586-019-1692-3
  21. Yeung LY, Murray LT, Martinerie P, Witrant E, Hu H, Banerjee A, Orsi A, Chappellaz J (2019) Isotopic constraint on the twentieth-century increase in tropospheric ozone. Nature, 570, 224–227. https://doi.org/10.1038/s41586-019-1277-1

2018

  1. Baggenstos D, Severinghaus JP, Mulvaney R, McConnel JR, Sigl M, Maselli O, Petit, JR, Grente B, Steig EJ (2018) A horizontal ice core from Taylor Glacier, its implications for Antarctic climate history, and an improved Taylor Dome ice core time scale. Paleoceanography and Paleoclimatology, 33(7). https://doi.org/10.1029/2017PA003297
  2. Bauska TK, Brook EJ, Marcott SA, Baggenstos D, Shackleton S, Severinghaus JP, and Petrenko VV (2018) Controls on millennial‐scale atmospheric CO2 variability during the last glacial period. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL077881
  3. Bereiter B, Kawamura K, Severinghaus JP (2018) New methods for measuring atmospheric heavy noble gas isotope and elemental ratios in ice core samples. Rapid Commun Mass Spectrom, 32, 801-814. https://doi.org/10.1002/rcm.8099
  4. Bereiter B, Shackleton S, Baggenstos D, Kawamura K, Severinghaus J (2018) Mean global ocean temperatures during the last glacial transition. Nature, 553, 39-44. doi:10.1038/nature25152
  5. Brook E, Buizert C (2018) Antarctic and global climate history viewed from ice cores. Nature, 558, 200-208. https://doi.org/10.1038/s41586-018-0172-5
  6. Buizert C, Sigl M, Severi M, Markle BR, Wettstein JJ, McConnell JR, Pedro JB, Sodemann H, Goto-Azuma K, Kawamura K, Fujita S, Motoyama H, Hirabayashi M, Uemura R, Stenni B, Parrenin F, He F, Fudge TJ, Steig EJ (2018) Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature, 563, 681-685. https://doi.org/10.1038/s41586-018-0727-5
  7. Cole-Dai J, Peterson KM, Kennedy JA, Cox TS, and Ferris DG (2018) Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record. Environmental Science & Technology Article, 52(15), 8373-8380. https://pubs.acs.org/doi/10.1021/acs.est.8b01890
  8. Fegyveresi JM, Alley RB, Muto A, Orsi AJ, and Spencer MK (2018) Surface formation, preservation, and history of low-porosity crusts at the WAIS Divide site, West Antarctica. The Cryosphere, 12, 325-341. doi:10.5194/tc-12-325-2018
  9. Fegyveresi JM, Alley RB, Voigt DE, Fitzpatrick JJ, Wilen, LA (2018) Instruments and methods: A case study of ice core bubbles as strain indicators. Annals of Glaciology, 1-12. doi:10.1017/aog.2018.23
  10. Garland J, Jones TR, Neuder M, Morris V, White JWC, Bradley E (2018) Anomaly Detection in Paleoclimate Records Using Permutation Entropy. Entropy, 20(12):931. https://doi.org/10.3390/e20120931
  11. Graeter KA, Osterberg EC, Ferris DG, Hawley RL, Marshall HP, Lewis G, Meehan T, McCarthy F, Overly T, Birkel SD (2018) Ice core records of West Greenland melt and climate forcing. Geophysical Research Letters, 45, 3164-3172. doi:10.1002/2017GL076641
  12. Graly J, Licht K, Kassab C, Bird B, and Kaplan M (2018) Warm-based basal sediment entrainment and far-field Pleistocene origin evidenced in central Transantarctic blue ice through stable isotopes and internal structures. Journal of Glaciology, 64(244), 185-196. doi:10.1017/jog.2018.4
  13. Jones TR, Roberts WHG, Steig EJ, Cuffey KM, Markle BR, and White JWC (2018) Southern Hemisphere climate variability forced by Northern Hemisphere ice-sheet topography. Nature, 554, 351–355. doi:10.1038/nature24669
  14. Kahle EC, Holme C, Jones TR, Gkinis V, and Steig EJ (2018) A Generalized Approach to Estimating Diffusion Length of Stable Water Isotopes from Ice‐Core Data. J. Geophys. Res. Earth Surf. Earth Surface, 123. https://doi.org/10.1029/2018JF004764
  15. Lilien DA, Fudge TJ, Koutnik MR, Conway H, Osterberg EC, Ferris DG, Waddington ED and Stevens MC (2018) Holocene ice‐flow speedup in the vicinity of the South Pole. Geophysical Research Letters, 45, 6557–6565. https://doi.org/10.1029/2018GL078253
  16. Markle BR, Steig EJ, Roe GH, Winckler G, McConnell JR (2018) Concomitant variability in high-latitude aerosols, water isotopes and the hydrologic cycle. Nature Geoscience, 11, 853-859. https://doi.org/10.1038/s41561-018-0210-9
  17. Miner KR, Campbell S, Gerbi C, Lilijedahl A, Anderson T, Perkins BL, Bernsen S, Gatesman T, Kreutz KJ (2018) Organochlorine Pollutants within a Polythermal Glacier in the Interior Eastern Alaska Range. Water, 10(9), 1157. https://doi.org/10.3390/w10091157
  18. Nicewonger MR, Aydin M, Prather MJ, Saltzman ES (2018) Large changes in biomass burning over the last millennium inferred from paleoatmospheric ethane in polar ice cores. Proceedings of the National Academy of Sciences, 115(49), 12413-12418. https://doi.org/10.1073/pnas.1807172115
  19. Polashenski DJ, Osterberg EC, Koffman BG, Winski D, Stamieszkin K, Kreutz KJ, Wake CP, Ferris DG, Introne D, Campbell S, Lewis GM (2018) Denali ice core methanesulfonic acid records North Pacific marine primary production. Journal of Geophysical Research: Atmospheres, 123. https://doi.org/10.1029/2017JD028123
  20. Santibáñez PA, Maselli OJ, Greenwood MC, Grieman MM, Saltzman ES, McConnell JR and Priscu JC (2018) Prokaryotes in the WAIS Divide ice core reflect source and transport changes between Last Glacial Maximum and the early Holocene. Global Change Biology. https://doi.org/10.1111/gcb.14042
  21. Spector P, Stone J, Pollard D, Hillebrand T, Lewis C, and Gombiner J (2018) West Antarctic sites for subglacial drilling to test for past ice-sheet collapse. The Cryosphere, 12, 2741-2757. https://doi.org/10.5194/tc-12-2741-2018
  22. Trusel LD, Das SB, Osman MB, Evans MJ, Smith BE, Fettweis X, McConnell JR, Noel BPY, van den Broeke MR (2018) Nonlinear rise in Greenland runoff in response to post-industrial Arctic warming. Nature, 564, 104-108. https://doi.org/10.1038/s41586-018-0752-4
  23. Winski D, Osterberg E, Kreutz K, Wake C, Ferris D, Campbell S, Baum M, Bailey A, Birkel S, Introne D, Handley M (2018) A 400‐year ice core melt layer record of summertime warming in the Alaska Range. Journal of Geophysical Research: Atmospheres, 123, 3594–3611. https://doi.org/10.1002/2017JD027539

2017

  1. Aarons SM, Aciego SM, Arendt CA, Blakowski MA, Steigmeyer A, Gabrielli P, Sierra-Hernandez MR, Beaudon E, Delmonte B, Baccolo G, May NW and Pratt KA (2017) Dust composition changes from Taylor Glacier (East Antarctica) during the last glacial-interglacial transition: A multi-proxy approach. Quaternary Science Reviews, 162, 60-71. https://doi.org/10.1016/j.quascirev.2017.03.011
  2. Baggenstos D, Bauska TK, Severinghaus JP, Lee JE, Schaefer H, Buizert C, Brook EJ, Shackleton S, and Petrenko VV (2017) Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Clim. Past, 13, 943-958. https://doi.org/10.5194/cp-13-943-2017
  3. Chan W, Mah M, Bay R and Talghader J (2017) Long-wavelength optical logging for high-resolution detection of ash layers in glacier ice. Journal of Glaciology, 63(237), 17-21. https://doi.org/10.1017/jog.2016.105
  4. D'Andrilli J, Foreman CM, Sigl M, Priscu JC and McConnell JR (2017) A 21000-year record of fluorescent organic matter markers in the WAIS Divide ice core. Clim. Past, 13, 533-544. https://doi.org/10.5194/cp-13-533-2017
  5. D’Andrilli J, Smith H, Dieser M, Foreman C (2017) Climate driven carbon and microbial signatures through the last ice age. Geochem. Persp. Let. https://doi.org/10.7185/geochemlet.1732
  6. Dunbar NW, Iverson NA, Van Eaton AR, Sigl M, Alloway BV, Kurbatov AV, Mastin LG, McConnell JR, and Wilson CJN (2017) New Zealand supereruption provides time marker for the Last Glacial Maximum in Antarctica. Scientific Reports, 7:12238. https://doi.org/10.1038/s41598-017-11758-0
  7. Hampton SE, Galloway AWE, Powers SM, Ozersky T, Woo KH, Batt RD, Labou SG, O'Reilly CM, Sharma S, Lottig NR, Stanley EH, North RL, Stockwell JD, Adrian R, Weyhenmeyer GA, Arvola L, Baulch HM, Bertani I, Bowman LL, Carey CC, Catalan J, Colom-Montero W, Domine LM, Felip M, Granados I, Gries C, Grossart H-P, Haberman J, Haldna M, Hayden B, Higgins SN, Jolley JC, Kahilainen KK, Kaup E, Kehoe MJ, MacIntyre S, Mackay AW, Mariash HL, McKay RM, Nixdorf B, Nõges P, Nõges T, Palmer M, Pierson DC, Post DM, Pruett MJ, Rautio M, Read JS, Roberts SL, Rücker J, Sadro S, Silow EA, Smith DE, Sterner RW, Swann GEA, Timofeyev MA, Toro M, Twiss MR, Vogt RJ, Watson SB, Whiteford EJ and Xenopoulos MA (2017) Ecology under lake ice. Ecology Letters, 20: 98-111. https://doi.org/10.1111/ele.12699
  8. Iverson NA, Lieb-Lappen R, Dunbar NW, Obbard R, Kim E, and Golden E (2017) The first physical evidence of subglacial volcanism under the West Antarctic Ice Sheet. Scientific Reports, 7:11457. https://doi.org/10.1038/s41598-017-11515-3
  9. Jones TR, Cuffey KM, White JWC, Steig EJ, Buizert C, Markle BR, McConnell JR, Sigl M (2017) Water Isotope Diffusion in the WAIS Divide Ice Core During the Holocene and Last Glacial. Journal of Geophysical Research: Earth Surface, 122, 290–309. https://doi.org/10.1002/2016JF003938
  10. Jones TR, White JWC, Steig EJ, Vaughn BH, Morris V, Gkinis V, Markle BR, and Schoenemann SW (2017) Improved methodologies for continuous-flow analysis of stable water isotopes in ice cores. Atmospheric Measurement Technologies, 10, 617-632. https://doi.org/10.5194/amt-10-617-2017
  11. Kluskiewicz D, Waddington E, Anandakrishnan S, Voigt D, Matsuika K and McCarthy M (2017) Sonic methods for measuring crystal orientation fabric in ice, and results from the West Antarctic ice sheet (WAIS) Divide. Journal of Glaciology, 1-15. https://doi.org/10.1017/jog.2017.20
  12. Lamp JL and Marchant DR (2017) Vapor transport and sublimation on Mullins Glacier, Antarctica. Earth and Planetary Science Letters, 465, 82-91. https://doi.org/10.1016/j.epsl.2017.02.016
  13. Manning JG, Ludlow F, Stine AR, Boos WR, Sigl M, Marlon JR (2017) Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt. Nature Communications, 8, 900, 1-9. https://doi.org/10.1038/s41467-017-00957-y
  14. Markle BR, Steig EJ, Buizert C, Schoenemann SW, Bitz CM, Fudge TJ, Pedro JB, Ding Q, Jones TR, White JWC and Sowers T (2017) Global atmospheric teleconnections during Dansgaard-Oeschger events. Nature Geoscience, 10, 36-40, https://doi.org/10.1038/ngeo2848
  15. McConnell JR, Burke A, Dunbar NW, Kohler P, Thomas JL, Arienzo MM, Chellman NJ, Maselli OJ, Sigl M, Adkins JF, Baggenstos D, Burkhart JF, Brook EJ, Buizert C, Cole-Dai J, Fudge TJ, Knorr G, Graf H-F, Grieman MM, Iverson N, McGwire KC, Mulvaney R, Paris G, Rhodes RH, Saltzman ES, Severinghaus JP, Steffensen JP, Taylor KC, and Winckler G (2017) Synchronous volcanic eruptions and abrupt climate change ∼17.7 ka plausibly linked by stratospheric ozone depletion. Proceedings of the National Academy of Sciences, 114(38), 10035-10040. https://doi.org/10.1073/pnas.1705595114
  16. Mekhaldi F, McConnell J, Adolphi F, Arienzo M, Chellman N, Maselli O, Moy AD, Plummer C, Sig M and Muscheler R (2017). No coincident nitrate enhancement events in polar ice cores following the largest known solar storms. Journal of Geophysical Research: Atmospheres, 122, 11900-11913, https://doi.org/10.1002/2017JD027325
  17. Miller O, Solomon DK, Miège C, Koenig L, Forster R, Schmerr N, Ligtenberg SRM, Montgomery L (2017) Direct evidence of meltwater flow within a firn aquifer in Southeast Greenland. Geophysical Research Letters, 44. https://doi.org/10.1002/2017GL075707
  18. Miller OL, Solomon DK, Miège C, Koenig LS, Forster RR, Montgomery LN, Schmerr N, Ligtenberg SRM, Legchenko A and Brucker L (2017) Hydraulic Conductivity of a Firn Aquifer in Southeast Greenland. Frontiers in Earth Science, 5:38. https://doi.org/10.3389/feart.2017.00038
  19. Montgomery LN, Schmerr N, Burdick S, Forster RR, Koenig L, Legchenko A, Ligtenberg S, Miège C, Miller OL and Solomon DK (2017) Investigation of Firn Aquifer Structure in Southeastern Greenland Using Active Source Seismology. Frontiers in Earth Science, 5:10. https://doi.org/10.3389/feart.2017.00010
  20. Osman M, Das S, Marchal O, and Evans M (2017) Methanesulfonic acid (MSA) migration in polar ice: data synthesis and theory. The Cryosphere, 11, 2439-2462, https://doi.org/10.5194/tc-11-2439-2017
  21. Osman M, Zawadowicz MA, Das SB, and Cziczo DJ (2017) Real-time analysis of insoluble particles in glacial ice using single-particle mass spectrometry. Atmospheric Measurement Techniques, 10, 4459-4477. https://doi.org/10.5194/amt-10-4459-2017
  22. Petrenko VV, Smith AM, Schaefer H, Riedel K, Brook E, Baggenstos D, Harth C, Hua Q, Buizert C, Schilt A, Fain X, Mitchell L, Bauska T, Orsi A, Weiss RF, Severinghaus JP (2017) Minimal geological methane emissions during the Younger Dryas–Preboreal abrupt warming event. Nature, 548, 443-446. https://doi.org/10.1038/nature23316
  23. Rhodes RH, Brook EJ, McConnell JR, Blunier T, Sime CL, Fain X and Mulvaney R (2017) Atmospheric methane variability: Centennial-scale signals in the Last Glacial Period. Global Biogeochem. Cycles, 31. https://doi.org/10.1002/2016GB005570
  24. Rhodes RH, Yang X, Wolff EW, McConnell JR, and Frey MM (2017) Sea ice as a source of sea salt aerosol to Greenland ice cores: a model-based study. Atmos. Chem. Phys., 17, 9417-9433, https://doi.org/10.5194/acp-17-9417-2017
  25. Seltzer AM, Buizert C, Baggenstos D, Brook E J, Ahn J, Yang J-W, and Severinghaus JP (2017) Does δ18O of O2 record meridional shifts in tropical rainfall?. Climate of the Past, 13, 1323-1338. https://doi.org/10.5194/cp-13-1323-2017
  26. Swanger KM (2017) Buried ice in Kennar Valley: a late Pleistocene remnant of Taylor Glacier. Antarctic Science, 1–13. 31 January 2017. https://doi.org/10.1017/S0954102016000687
  27. Winski D, Osterberg E, Ferris D, Kreutz K, Wake C, Campbell S, Hawley R, Roy S, Birkel S, Introne D, Handley M (2017) Industrial-age doubling of snow accumulation in the Alaska Range linked to tropical ocean warming. Scientific Reports, 7:17869. https://doi.org/10.1038/s41598-017-18022-5

2016

  1. Bauska TK, Baggenstos D, Brook EJ, Mix AC, Marcott SA, Petrenko VV, Schaefer H, Severinghaus JP, Lee JE (2016) Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proceedings of the National Academies of Sciences, 113(13), 3465-3470. https://doi.org/10.1073/pnas.1513868113
  2. Fegyveresi JM, Alley RB, Fitzpatrick JJ, Cuffey KM, McConnell JR, Voigt DE, Spencer MK and Stevens NT (2016) Five millennia of surface temperatures and ice core bubble characteristics from the WAIS Divide deep core, West Antarctica. Paleoceanography, 31(3), 416-433. https://doi.org/10.1002/2015PA002851
  3. Fudge TJ, Markle BR, Cuffey K, Buizert C, Taylor K, Steig EJ, Waddington E, Conway H and Koutnik M (2016) Variable relationship between accumulation and temperature in West Antarctica for the past 31,000 years. Geophysical Research Letters, 43(8), 3795-3803. https://doi.org/10.1002/2016GL068356
  4. Fudge TJ, Taylor KC, Waddington EW, Fitzpatrick JJ and Conway H (2016) Electrical stratigraphy of the WAIS Divide ice core: Identification of centimeter-scale irregular layering. Journal of Geophysical Research: Earth Surface, 121, 1218-1229. https://doi.org/10.1002/2016JF003845
  5. Goodge JW, and Severinghaus JP (2016) Rapid Access Ice Drill: a new tool for exploration of the deep Antarctic ice sheets and subglacial geology. Journal of Glaciology, 62, (236), 1049-1064. https://doi.org/10.1017/jog.2016.97
  6. Klein ES, Nolan M, McConnell J, Sigl M, Cherry J, Young J, Welker JM (2016) McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes. Quaternary Science Reviews, 131, 274-284. https://doi.org/10.1016/j.quascirev.2015.07.030
  7. Koutnik M, Fudge TJ, Conway H, Waddington E, Neumann T, Cuffey K, Buizert C and Taylor K (2016) Holocene accumulation and ice flow near the West Antarctic Ice Sheet Divide ice-core site. Journal of Geophysical Research: Earth Surface, 121, 1-18. https://doi.org/10.1002/2015JF003668
  8. Legrand M, McConnell J, Fischer H, Wolff EW, Preunkert S, Arienzo M, Chellman N, Leuenberger D, Maselli O, Place P, Sigl M, Schüpbach S, and Flannigan M (2016) Boreal fire records in Northern Hemisphere ice cores: a review. Climate of the Past, 12, 2033-2059. https://doi.org/10.5194/cp-12-2033-2016
  9. Luthra T, Anandakrishnan S, Winberry JP, Alley RB, Holschuh N (2016) Basal characteristics of the main sticky spot on the ice plain of Whillans Ice Stream, Antarctica. Earth and Planetary Science Letters, 440, 12-19. https://doi.org/10.1016/j.epsl.2016.01.035
  10. Mackay SL and Marchant DR (2016) Dating buried glacier ice using cosmogenic 3He in surface clasts: Theory and application to Mullins Glacier, Antarctica. Quaternary Science Reviews, 140, 75-100. https://doi.org/10.1016/j.quascirev.2016.03.013
  11. Miège C, Forster RR, Brucker L, Koenig LS, Solomon DK, Paden JD, Box JE, Burgess EW, Miller JZ, McNerney L, Brautigam N, Fausto RS, Gogineni S (2016) Spatial extent and temporal variability of Greenland firn aquifers detected by ground and airborne radars. J. Geophys. Res. Earth Surf., 121, 2381-2398. https://doi.org/10.1002/2016JF003869
  12. Petrenko VV, Severinghaus JP, Schaefer H, Smith AM, Kuhl T, Baggenstos D, Hua Q, Brook EJ, Rose P, Kulin R, Bauska T, Harth C, Buizert C, Orsi A, Emanuele G, Lee JE, Brailsford G, Keeling R, Weiss RF (2016) Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates. Geochimica et Cosmochimica Acta. 177, 62-77. https://doi.org/10.1016/j.gca.2016.01.004
  13. Santibáñez PA, McConnell JR and Priscu JC (2016) A flow cytometric method to measure prokaryotic records in ice cores: an example from the West Antarctic Ice Sheet Divide drilling site. Journal of Glaciology, 62(234), 655-673. https://doi.org/10.1017/jog.2016.50
  14. Sigl M, Fudge TJ, Winstrup M, Cole-Dai J, Ferris D, McConnell JR, Taylor KC, Welten KC, Woodruff TE, Adolphi F, Bisiaux M, Brook EJ, Buizert C, Caffee MW, Dunbar NW, Edwards R, Geng L, Iverson N, Koffman B, Layman L, Maselli OJ, McGwire K, Muscheler R, Nishiizumi K, Pasteris DR, Rhodes RH and Sowers TA (2016) The WAIS Divide deep ice core WD2014 chronology - Part 2: Annual-layer counting (0-31 ka BP). Climate of the Past, 12, 769-786. https://doi.org/10.5194/cp-12-769-2016
  15. Taylor K (2016) Introduction to special section on the WAIS Divide Special Issue of Paleoceanography. Paleoceanography, 31, 1474-1478. https://doi.org/10.1002/2016PA002995

2015

  1. Bauska TK, Joos F, Mix AC, Roth R, Ahn J and Brook EJ (2015) Links between atmospheric carbon dioxide, the land carbon reservoir and climate over the past millennium. Nature Geoscience, 8, 383-387. https://doi.org/10.1038/ngeo2422
  2. Buizert C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR and Taylor KC (2015) The WAIS Divide deep ice core WD2014 chronology - Part 1: Methane synchronization (68-31 ka BP) and the gas age-ice age difference. Climate of the Past, 11, 153-173. https://doi.org/10.5194/cp-11-153-2015
  3. Giese AL, Hawley RL (2015) Reconstructing thermal properties of firn at Summit, Greenland, from a temperature profile time series. Journal of Glaciology, 61(227), 503-510. https://doi.org/10.3189/2015JoG14J204
  4. Higgins JA, Kurbatov AV, Spaulding NE, Brook E, Introne DS, Chimiak LM, Yan Y, Mayewski P, Bender ML (2015) Atmospheric composition 1 million years ago from blue ice in the Allan Hills, Antarctica. Proceedings of the National Academies of Sciences, 112(22), 6887-6891. https://doi.org/10.1073/pnas.1420232112
  5. Klein ES, Nolan M, McConnell J, Sigl M, Cherry J, Young J, Welker JM (2015) McCall Glacier record of Arctic climate change: Interpreting a northern Alaska ice core with regional water isotopes. Quaternary Science Reviews, 131(part B), 274-284. https://doi.org/10.1016/j.quascirev.2015.07.030
  6. Mekhaldi F, Muscheler R, Adolphi F, Aldahan A, Beer J, McConnell JR, Possnert G, Sigl M, Svensson A, Synal H-A, Welten KC and Woodruff TE (2015) Multiradionuclide evidence for the solar origin of the cosmic-ray events of AD 774/5 and 993/4. Nature Communications, 6:8611. https://doi.org/10.1038/ncomms9611
  7. Mernild SH, Hanna E, McConnell JR, Sigl M, Beckerman AP, Yde JC, Cappelen J, Malmros JK, and Steffen K (2015) Greenland precipitation trends in a long-term instrumental climate context (1890–2012): evaluation of coastal and ice core records. International Journal of Climatology, 35: 303-320. https://doi.org/10.1002/joc.3986
  8. Mitchell LE, Buizert C, Brook EJ, Breton DJ, Fegyveresi J, Baggenstos D, Orsi A, Severinghaus J, Alley RB, Albert M, Rhodes RH, McConnell JR, Sigl M, Maselli O, Gregory S and Ahn J (2015) Observing and modeling the influence of layering on bubble trapping in polar firn. Journal of Geophysical Research, 120(6), 2558-2574. https://doi.org/10.1002/2014JD022766
  9. Orsi AJ, Kawamura K, Fegyveresi JM, Headly MA, Alley RB and Severinghaus JP (2015) Differentiating bubble-free layers from melt layers in ice cores using noble gases. Journal of Glaciology, 61(227), 585-594. https://doi.org/10.3189/2015JoG14J237
  10. Osterberg E, Hawley R, Wong G, Kopec B, Ferris D, Howley J (2015) Coastal ice-core record of recent northwest Greenland temperature and sea-ice concentration. Journal of Glaciology, 61(230), 1137-1146. https://doi.org/10.3189/2015JoG15J054
  11. Peterson K, Cole-Dai J, Brandis D, Cox T, and Splett S (2015) Rapid measurement of perchlorate in polar ice cores down to sub-ng L−1 levels without pre-concentration. Analytical and Bioanalytical Chemistry, 407, 7965-7972. https://doi.org/10.1007/s00216-015-8965-y
  12. Rhodes RH, Brook EJ, Chiang JCH, Blunier T, Maselli OJ, McConnell JR, Romanini D and Severinghaus JP (2015) Enhanced tropical methane production in response to iceberg discharge in the North Atlantic. Science, 348(6238), 1016-1019. https://doi.org/10.1126/science.1262005
  13. Sigl M, Winstrup M, McConnell JR, Welten KC, Plunkett G, Ludlow F, Büntgen U, Caffee M, Chellman N, Dahl-Jensen D, Fischer H, Kipfstuhl S, Kostick C, Maselli OJ, Mekhaldi F, Mulvaney R, Muscheler R, Pasteris DR, Pilcher JR, Salzer M, Schüpbach S, Steffensen JP, Vinther BM, and Woodruff TE (2015) Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature, 543-549. https://doi.org/10.1038/nature14565
  14. Steig EJ, Huybers K, Singh HA, Steiger NJ, Ding Q, Frierson DMW, Popp T, and White JWC (2015) Influence of West Antarctic Ice Sheet collapse on Antarctic surface climate. Geophysical Research Letters, 42, 4862-4868. https://doi.org/10.1002/2015GL063861
  15. WAIS Divide Project Members (2015) Precise interpolar phasing of abrupt climate change during the last ice age. Nature, 520, 661-665. https://doi.org/10.1038/nature14401

2014

  1. Aydin M, Fudge TJ, Verhulst KR, Nicewonger MR, Waddington ED, Saltzman ES (2014) Carbonyl sulfide hydrolysis in Antarctic ice cores and an atmospheric history for the last 8000 years. Journal of Geophysical Research Atmospheres, 119(13), 8500-8514. https://doi.org/10.1002/2014JD021618
  2. Buizert C, Bagenstos D, Jian W, Purtschert R, Petrenko VV, Lu Z-T, Müller P, Kuhl T, Lee J, Severinghaus JP, Brook EJ (2014) Radiometric 81Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proceedings of the National Academy of Sciences, 111(19), 6876-6881. https://doi.org/10.1073/pnas.1320329111
  3. Buizert C, Cuffey KM, Severinghaus JP, Baggenstos D, Fudge TJ, Steig EJ, Markle BR, Winstrup M, Rhodes RH, Brook EJ, Sowers TA, Clow GD, Cheng H, Edwards RL, Sigl M, McConnell JR, Taylor KC (2014) The WAIS Divide deep ice core WD2014 chronology – Part 1: Methane synchronization (68–31 ka BP) and the gas age–ice age difference. Climate of the Past, 11, 153-173. https://doi.org/10.5194/cp-11-153-2015
  4. Fitzpatrick JJ, Voigt DE, Fegyveresi JM, Stevens NT, Spencer MK, Cole-Dai J, Alley RB, Jardine GE, Cravens ED, Wilen LA, Fudge TJ, McConnell JR (2014) Physical properties of the WAIS Divide ice core. Journal of Glaciology, 60(224), 1181-1198. https://doi.org/10.3189/2014JoG14J100
  5. Forster RR, Box JE, van den Broeke MR, Miège C, Burgess EW, van Angelen JH, Lenaerts JTM, Koenig LS, Paden J, Lewis C, Gogineni SP, Leuschen C, McConnell JR (2014) Extensive liquid meltwater storage in firn within the Greenland ice sheet. Nature Geoscience, 7, 95-98. https://doi.org/10.1038/ngeo2043
  6. Geng L, Alexander B, Cole-Dai J, Steig EJ, Savarin J, Sofen ED, Schauer AJ (2014) Nitrogen isotopes in ice core nitrate linked to anthropogenic atmospheric acidity change. Proceedings of the National Academy of Sciences, 111(16), 5808-5812. https://doi.org/10.1073/pnas.1319441111
  7. Geng L, Cole-Dai J, Alexander B, Erbland J, Savarino J, Schauer AJ, Steig Ej, Lin P, fu Q, Zatko MC (2014) On the origin of the occasional spring nitrate peak in Greenland snow. Atmospheric Chemistry and Physics, 14, 13361-13376. https://doi.org/10.5194/acp-14-13361-2014
  8. Gibson CJ, Johnson JA, Shturmakov AJ, Mortensen NB, Goetz JJ (2014) Replicate ice-coring system architecture: mechanical design. Annals of Glaciology, 55, (68), 165-172. https://doi.org/10.3189/2014AoG68A019
  9. Hawley R, Courville Z, Kehrl L, Lutz E, Osterberg E, Overly T, Wong G (2014) Recent accumulation variability in northwest Greenland from ground-penetrating radar and shallow cores along the Greenland Inland Traverse. Journal of Glaciology, 60(220), 375-382. https://doi.org/10.3189/2014JoG13J141
  10. Johnson JA, Mortensen NB, Gibson CJ, Goetz JJ, Shturmakov AJ (2014) Replicate ice-coring system testing. Annals of Glaciology, 55, (68), 331-338. https://doi.org/10.3189/2014AoG68A034
  11. Johnson JA, Shturmakov AJ, Kuhl TW, Mortensen NB, Gibson CJ (2014) Next generation of an intermediate depth drill. Annals of Glaciology, 55, (68), 27-33. https://doi.org/10.3189/2014AoG68A011
  12. Keegan KM, Albert MR, McConnell JR, Baker I (2014) Climate change and forest fires synergistically drive widespread melt events of the Greenland Ice Sheet. Proceedings of the National Academy of Sciences, 111(22), 7964-7967. https://doi.org/10.1073/pnas.1405397111
  13. Koenig LS, Miège C, Forster RR, and Brucker L (2014) Initial in situ measurements of perennial meltwater storage in the Greenland firn aquifer. Geophys. Res. Lett., 41, 81-85. https://doi.org/10.1002/2013GL058083
  14. Koffman BG, Handley MJ, Osterberg EC, Wells ML and Kreutz KJ (2014) Dependence of ice-core relative trace-element concentration on acidification. Journal of Glaciology, 60(219), 103-112. https://doi.org/10.3189/2014JoG13J137
  15. Koffman BG, Kreutz KJ, Breton DJ, Kane EJ, Winski DA, Birkel SD, Kurbatov AV and Handley MJ (2014) Centennial-scale variability of the Southern Hemisphere westerly wind belt in the eastern Pacific over the past two millennia. Climate of the Past, 10, 1125-1144. https://doi.org/10.5194/cp-10-1125-2014
  16. Korotkikh EV, Mayewski PA, Dixon D, Kurbatov AV, Handley MJ (2014) Recent increase in Ba concentrations as recorded in a South Pole ice core. Atmospheric Environment, 89, 683-687. https://doi.org/10.1016/j.atmosenv.2014.03.009
  17. Kuhl TW, Johnson JA, Shturmakov AJ, Goetz JJ, Gibson CJ, Lebar DA (2014) A new large-diameter ice-core drill: the Blue Ice Drill. Annals of Glaciology, 55, (68), 1-6. https://doi.org/10.3189/2014AoG68A009
  18. Mackay SL, Marchant DR, Lamp JL, Head JW (2014) Cold-based debris-covered glaciers: Evaluating their potential as climate archives through studies of ground-penetrating radar and surface morphology. Journal of Geophysical Research Earth Surface, 119, 2505–2540. https://doi.org/10.1002/2014JF003178
  19. Marcott SA, Bauska TK, Buizert C, Steig EJ, Rosen JL, Cuffey KM, Fudge TJ, Severinghaus JP, Ahn J, Kalk M, McConnell JR, Sowers T, Taylor KC, White JWC and Brook EJ (2014) Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature, 514, 616-619. https://doi.org/10.1038/nature13799
  20. McConnell JR, Maselli OJ, Sigl M, Vallelonga P, Neumann T, Anschutz H, Bales RC, Curran MAJ, Das SB, Edwards R, Kipfstuhl S, Layman L, Thomas ER (2014) Antarctic-wide array of high-resolution ice core records reveals pervasive lead pollution began in 1889 and persists today. Scientific Reports, 4, 5848. https://doi.org/10.1038/srep05848
  21. Mortensen NB, Goetz JJ, Gibson CJ, Johnson JA, Shturmakov AJ (2014) Replicate ice-coring system architecture: electrical, electronic and software design. Annals of Glaciology, 55, (68), 156-164. https://doi.org/10.3189/2014AoG68A014
  22. Mortensen NB, Johnson JA, Shturmakov AJ (2014) Precision cable winch level wind for deep ice-coring systems. Annals of Glaciology, 55, (68), 99-104. https://doi.org/10.3189/2014AoG68A013
  23. Popp TJ, Hansen SB, Sheldon SG, Schwander J, Johnson JA (2014) Drilling into debris-rich basal ice at the bottom of the NEEM (Greenland) borehole. Annals of Glaciology, 55(68), 199-206. https://doi.org/10.3189/2014AoG68A029
  24. Rasmussen SO, Bigler M, Blockley SP, Blunier T, Buchardt SL, Clausen HB, Cvijanovic I, Dahl-Jensen D, Johnsen SJ, Fischer H, Gkinis V, Guillevic M, Hoek WZ, Lowe JJ, Pedro JB, Popp T, Seierstad IK, Steffensen JP, Svensson AM, Vallelonga P, Vinther BM, Walker MJC, Wheatley JJ, Winstrup M (2014) A stratigraphic framework for abrupt climatic changes during the Last Glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quaternary Science Reviews, 106, 14-28. https://doi.org/10.1016/j.quascirev.2014.09.007
  25. Schilt A, Brook EJ, Bauska TK, Baggenstos D, Fischer H, Joos F, Petrenko VV, Schaefer H, Schmitt J and Severinghaus JP (2014) Isotopic constraints on marine and terrestrial N2O emissions during the last deglaciation. Nature, 516(7530): 234-237. https://doi.org/10.1038/nature13971
  26. Schoenemann SW, Steig EJ, Ding Q, Markle BR and Schauer AJ (2014) Triple water-isotopologue record from WAIS Divide, Antarctica: controls on glacial-interglacial changes in 17Oexcess of precipitation. Journal of Geophysical Research Atmospheres, 119(14), 8741-8763. https://doi.org/10.1002/2014JD021770
  27. Seierstad IK, Abbott PM, Bigler M, Blunier T, Bourne AJ, Brook E, Buchardt SL, Buizert C, Clausen HB, Cook E, Dahl-Jensen D, Davies SM, Guillevic M, Johnsen SJ, Pedersen DS, Popp TJ, Rasmussen SO, Severinghaus JP, Svensson A, Vinther BM (2014) Consistently dated records from the Greenland GRIP, GISP2 and NGRIP ice cores for the past 104 ka reveal regional millennial-scale δ18O gradients with possible Heinrich event imprint. Quaternary Science Reviews 106, 29-46. https://doi.org/10.1016/j.quascirev.2014.10.032
  28. Sigl M, McConnell JR, Toohey M, Curran M, Das SB, Edwards R, Isaksson E, Kawamura K, Kipfstuhl S, Kruger K, Layman L, Maselli O, Motizuki Y, Motoyama H, Pasteris DR and Severi M (2014) Insights from Antarctica on volcanic forcing during the Common Era. Nature Climate Change, 1-5. https://doi.org/10.1038/nclimate2293
  29. Slawny KR, Johnson JA, Mortensen NB, Gibson CJ, Goetz JJ, Shturmakov AJ, Lebar DA, Wendricks AW (2014) Production drilling at WAIS Divide. Annals of Glaciology, 55, (68), 147-155. https://doi.org/10.3189/2014AoG68A018
  30. Sofen ED, Alexander B, Steig EJ, Thiemens MH, Kunasek SA, Amos HM, Schauer AJ, Hastings MG, Bautista J, Jackson TL, Vogel LE, McConnell JR, Pasteris DR and Saltzman ES (2014) WAIS Divide ice core suggests sustained changes in the atmospheric formation pathways of sulfate and nitrate since the 19th century in the extratropical Southern Hemisphere. Atmospheric Chemistry and Physics, 14, 5749-5769. https://doi.org/10.5194/acp-14-5749-2014
  31. Souney JM, Twickler MS, Hargreaves GM, Bencivengo BM, Kippenhan MJ, Johnson JA, Cravens ED, Neff PD, Nunn RM, Orsi AJ, Popp TJ, Rhoades JF, Vaughn BH, Voigt DE, Wong GJ and Taylor KC (2014) Core handling and processing for the WAIS Divide ice-core project. Annals of Glaciology, 55(68), 15-26. https://doi.org/10.3189/2014AoG68A008
  32. Yu P-L (2014) Ice Patch Archaeology and Paleoecology in Glacier National Park. Archaeology Program, National Park Service U.S. Department of the Interior

2013

  1. Cole-Dai J, Ferris DG, Lanciki AL, Savarino J, Thiemens MH, McConnell JR (2013) Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. Journal of Geophysical Research Atmospheres, 118, 7459–7466. https://doi.org/10.1002/jgrd.50587
  2. Knuth MA and Courville ZR (2013) Proof of Concept: Firn Air Facility Cooling at Summit Station, Greenland. Journal of Cold Regions Engineering, 27(1). https://doi.org/10.1061/(ASCE)CR.1943-5495.0000049
  3. Koffman BG, Kreutz KJ, Kurbatov AV and Dunbar NW (2013) Impact of known local and tropical volcanic eruptions of the past millennium on the WAIS Divide microparticle record. Geophysical Research Letters, 40(17), 4712-4716. https://doi.org/10.1002/grl.50822
  4. Marion GM, Murray AE, Wagner B, Fritsen CH, Kenig F, Doran PT (2013) Carbon Sequestration and Release from Antarctic Lakes: Lake Vida and West Lake Bonney (McMurdo Dry Valleys). Aquatic Geochemistry, 19(2), 135-145. https://doi.org/10.1007/s10498-012-9184-1
  5. Miège C, Forster R, Box J, Burgess E, McConnell J, Pasteris D, and Spikes V (2013) Southeast Greenland high accumulation rates derived from firn cores and ground-penetrating radar. Annals of Glaciology, 54(63), 322-332. https://doi.org/10.3189/2013AoG63A358
  6. Mitchell L, Brook E, Lee JE, Buizert C and Sowers T (2013) Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget. Science, 342(6161), 964- 966. https://doi.org/10.1126/science.1238920
  7. Sigl M, McConnell JR, Layman L, Maselli O, McGwire K, Pasteris D, Dahl-Jensen D, Steffensen JP, Vinther B, Edwards R, Mulvaney R and Kipfstuhl S (2013) A new bipolar ice core record of volcanism from WAIS Divide and NEEM and implications for climate forcing of the last 2000 years. Journal of Geophysical Research, 118, 1151-1169. https://doi.org/10.1029/2012JD018603
  8. Voigt DE, Peters LE, Anandakrishnan S (2013) 'Georods': the development of a four-element geophone for improved seismic imaging of glaciers and ice sheets. Annals of Glaciology, 54(64), 142-148. https://doi.org/10.3189/2013AoG64A432
  9. WAIS Divide Project Members (2013) Onset of deglacial warming in West Antarctica driven by local orbital forcing. Nature, 500, 440-444. https://doi.org/10.1038/nature12376

2012

  1. Bisiaux MM, Edwards R, McConnell JR, Curran MAJ, Van Ommen TD, Smith AM, Neumann TA, Pasteris DR, Penner JE and Taylor K (2012) Changes in black carbon deposition to Antarctica from two high-resolution ice core records, 1850-2000 AD. Atmospheric Chemistry and Physics, 12, 4107-4115. https://doi.org/10.5194/acp-12-4107-2012
  2. Lanciki A, Cole-Dai J, Thiemens TH, Savarino J (2012) Sulfur isotope evidence of little or no stratospheric impact by the 1783 Laki volcanic eruption. Geophysical Research Letters, 39(1). https://doi.org/10.1029/2011GL050075
  3. Murray AE, Kenig F, Fritsen CH, McKay Cp, Cawley KM, Edwards R, Kuhn E, McKnight DM, Ostrom NE, Peng V, Ponce A, Priscu JC, Samarkin V, Townsend AT, Wagh P, Young SA, Yung PT, Doran PT (2012) Microbial life at −13°C in the brine of an ice-sealed Antarctic lake. Proceedings of the National Academy of Sciences, 109(50), 20626-20631. https://doi.org/10.1073/pnas.1208607109
  4. Neff PD, Steig EJ, Clark DH, McConnell JR, Pettit EC, Menounos B (2012) Ice-core net snow accumulation and seasonal snow chemistry at a temperate-glacier site: Mount Waddington, southwest British Columbia, Canada. Journal of Glaciology, 58(212), 1165-1175. https://doi.org/10.3189/2012JoG12J078

2011

  1. Battle MO, Severinghaus JP, Sofen ED, Plotkin D, Orsi AJ, Aydin M, Montzka SA, Sowers T and Tans PP (2011) Controls on the movement and composition of firn air at the West Antarctic Ice Sheet Divide. Atmospheric Chemistry and Physics, 11, 11007-11021. https://doi.org/10.5194/acp-11-11007-2011
  2. Fegyveresi JM, Alley RB, Spencer MK, Fitzpatrick JJ, Steig EJ, White JWC, McConnell JR and Taylor KC (2011) Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: bubble number-density estimates. Journal of Glaciology, 57(204), 629-638. https://doi.org/10.3189/002214311797409677
  3. Ferris DG, Cole-Dai J, Reyes AR, Budner DM (2011) South Pole ice core record of explosive volcanic eruptions in the first and second millennia A.D. and evidence of a large eruption in the tropics around 535 A.D. Journal of Geophysical Research, 116(D17). https://doi.org/10.1029/2011JD015916
  4. Kowalewski DE, Marchant DR, Swanger KM, Head JW (2011) Modeling vapor diffusion within cold and dry supraglacial tills of Antarctica: Implications for the preservation of ancient ice. Geomorphology, 126, 159-173. https://doi.org/10.1016/j.geomorph.2010.11.001
  5. Mitchell LE, Brook EJ, Sowers T and McConnell JR (2011) Multidecadal variability of atmospheric methane, 1000-1800 C.E. Journal of Geophysical Research, 116(G02007). https://doi.org/10.1029/2010JG001441

2010

  1. Bender ML, Burgess E, Alley RB, Barnett B, Clow GD (2010) On the nature of the dirty ice at the bottom of the GISP2 ice core. Earth Planetary Science Letters, 299, 466-473. https://doi.org/10.1016/j.epsl.2010.09.033
  2. Kunasek SA, Alexander B, Steig EJ, Sofen ED, Jackson TL, Thiemens MH, McConnell JR, Gleason DJ and Amos HM (2010) Sulfate sources and oxidation chemistry over the past 230 years from sulfur and oxygen isotopes of sulfate in a West Antarctic ice core. Journal of Geophysical Research, 115(D18313). https://doi.org/10.1029/2010JD013846