Thermal Drilling
Displaying 1 - 25 of 113
Citation | Year |
---|---|
Mary R Albert, Kristina R Slawny, Jay A Johnson, Elliot Moravec, Tanner W Kuhl (2024) Drilling Ice and Subglacial Rock Cores for Scientific Discovery in a Changing Climate. In: Glaciers - Recent Research, Importance to Humanity and the Effects of Climate Change. IntechOpen. Edited by Emeritus Prof. Stuart Arthur Harris, doi: 10.5772/intechopen.1004695. https://doi.org/10.5772/intechopen.1004695 | 2024 |
NSF Ice Drilling Program (2023) Thermal Drill Operations and Maintenance Manual. 1-22. | 2023 |
Dirk Heinen, Peter Linder, Simon Zierke, Christopher Wiebusch (2021) An efficient melting probe for glacial research. Annals of Glaciology, 62, (84), 171-174. doi: 10.1017/aog.2020.28. https://doi.org/10.1017/aog.2020.28 | 2021 |
Dirk Heinen, Jan Audehm, Fabian Becker, Georg Boeck, Clemens Espe, Marco Feldmann, Gero Francke, Pia Friend, Niklas Haberberger, Klaus Helbing, Chi Thanh Nghe, Michael Stelzig, Martin Vossiek, Christopher Wiebusch, Simon Zierke (2021) The TRIPLE Melting Probe - an Electro-Thermal Drill with a Forefield Reconnaissance System to Access Subglacial Lakes and Oceans. OCEANS 2021: San Diego – Porto, 1-7. doi: 10.23919/OCEANS44145.2021.9705999. https://doi.org/10.23919/OCEANS44145.2021.9705999 | 2021 |
Pavel Talalay, Hong J (2021) Perspectives for development of ice drilling technology: continuation of the discussion. Annals of Glaciology, 62, (84), 143-156. doi: 10.1017/aog.2020.81. https://doi.org/10.1017/aog.2020.81 | 2021 |
Lars Steffen Weinstock, Simon Zierke, Dmitry Eliseev, Peter Linder, Cornelius Vollbrecht, Dirk Heinen, Christopher Wiebusch (2021) The Autonomous Pinger Unit of the Acoustic Navigation Network in EnEx-RANGE: an autonomous in-ice melting probe with acoustic instrumentation. Annals of Glaciology, 62, (84), 89-98. doi: 10.1017/aog.2020.67. https://doi.org/10.1017/aog.2020.67 | 2021 |
Pavel Talalay (2020) Electric Thermal Coring Drills. In: Thermal Ice Drilling Technology. Springer Geophysics. Springer, Singapore, 81-144. doi: 10.1007/978-981-13-8848-4_2. https://doi.org/10.1007/978-981-13-8848-4_2 | 2020 |
Pavel Talalay (2020) Perspectives for Future Development of Thermal Ice-Drilling Technology. In: Thermal Ice Drilling Technology. Springer Geophysics. Springer, Singapore, 263-274. doi: 10.1007/978-981-13-8848-4_5. https://doi.org/10.1007/978-981-13-8848-4_5 | 2020 |
Kai Schüller, Julia Kowalski (2019) Melting probe technology for subsurface exploration of extraterrestrial ice – Critical refreezing length and the role of gravity. Icarus, 317, 1-9. doi: 10.1016/j.icarus.2018.05.022. https://doi.org/10.1016/j.icarus.2018.05.022 | 2019 |
Pavel Talalay, Yazhou Li, Mikhail Sysoev, Jialin Hong, Xiao Li, Xiaopeng Fan (2019) Thermal tips for ice hot-point drilling: Experiments and preliminary thermal modeling. Cold Regions Science and Technology, 160, 97-109. doi: 10.1016/j.coldregions.2019.01.015. https://doi.org/10.1016/j.coldregions.2019.01.015 | 2019 |
Mera Horne (2018) Thermal probe design for Europa sample acquisition. Acta Astronautica, 142, 29-36. doi: 10.1016/j.actaastro.2017.10.015. https://doi.org/10.1016/j.actaastro.2017.10.015 | 2018 |
Norbert Kömle, Patrick Tiefenbacher, Alexandra Kahr (2018) Melting probe experiments under Mars surface conditions – the influence of dust layers, CO2-ice and porosity. Icarus, 315, 7-19. doi: 10.1016/j.icarus.2018.06.012. https://doi.org/10.1016/j.icarus.2018.06.012 | 2018 |
Norbert Kömle, Patrick Tiefenbacher, Peter Weiss, Anastasiia Bendiukova (2018) Melting probes revisited – Ice penetration experiments under Mars surface pressure conditions. Icarus, 308, 117-127. doi: 10.1016/j.icarus.2017.08.006. https://doi.org/10.1016/j.icarus.2017.08.006 | 2018 |
Pavel Talalay, Bowen Liu, Yang Yang, Xiaopeng Fan, Jialin Hong, Da Gong, Mikhail Sysoev, Xiao Li, Yazhou Li (2018) Electric thermal drills for open-hole coring in ice. Polar Science, 17, 13-22. doi: 10.1016/j.polar.2018.05.007. https://doi.org/10.1016/j.polar.2018.05.007 | 2018 |
Ashley Davis (2017) A Prototype Ice-Melting Probe for Collecting Biological Samples from Cryogenic Ice at Low Pressure. Astrobiology, 17, (8), 709-720. doi: 10.1089/ast.2016.1514. https://doi.org/10.1089/ast.2016.1514 | 2017 |
Narayanaswamy Vedachalam, Arumugam Vadivelan, Arunachalam Umapathy, Munusamy Murugesan, Gopal Durai, Ellappan Chandrasekaran, Chithiravel Jothi, Raju Ramesh, Sethuraman Ramesh, Gidugu Ananda Ramadass (2017) Concept and Testing of a Remotely Operated Vehicle-Mountable Inductive Electrothermal Polar Under-Ice Corer. Marine Technology Society Journal, 51, (6), 33-43. doi: 10.4031/MTSJ.51.6.4. https://doi.org/10.4031/MTSJ.51.6.4 | 2017 |
Julia Kowalski, Peter Linder, Simon Zierke, Benedikt von Wulfen, Joachim Clemens, Konstantinos Konstanti, Gerald Ameres, Ruth Hoffmann, Jill Mikucki, Slawek Tulaczyk, Oliver Funke, D Blandfort, Clemens Espe, Marco Feldmann, Gero Francke, S Hiecker, Engelbert Plescher, S Schöngarth, Kai Schüller, Bernd Dachwald, Ilya Digel, Gerhard Artmann, Dmitry Eliseev, Dirk Heinen, Franziska Scholz, Christopher Wiebusch, Sabine Macht, Ulf Bestmann, Thomas Reineking, Christoph Zetzsche, Kerstin Schill, Roger Förstner, Herbert Niedermeier, Arkadiusz Szumski, Bernd Eissfeller, Uwe Naumann, Klaus Helbing (2016) Navigation technology for exploration of glacier ice with maneuverable melting probes. Cold Regions Science and Technology, 123, 53-70. doi: 10.1016/j.coldregions.2015.11.006. https://doi.org/10.1016/j.coldregions.2015.11.006 | 2016 |
Olivier Alemany, Jérôme Chappellaz, Jack Triest, Calzas M, Cattani O, Chemin JF, Desbois Q, Desbois T, Romain Duphil, Falourd S, Grilli R, Guillerme C, Kerstel E, Laurent B, Eric Lefebvre, Marrocco N, Pascual O, Luc Piard, Philippe Possenti, Romanini D, Thiebaut V, Yamani R (2014) The SUBGLACIOR drilling probe: concept and design. Annals of Glaciology, 55, (68), 233-242. doi: 10.3189/2014AoG68A026. https://doi.org/10.3189/2014AoG68A026 | 2014 |
Grilli R, Marrocco N, Desbois T, Guillerme C, Jack Triest, Kerstel E, Romanini D (2014) : SUBGLACIOR: An opticalanalyzer embedded in an Antarctic ice probefor exploring the past climate. Review of Scientific Instruments, 85, (111301), 1-8. doi: 10.1063/1.4901018. https://doi.org/10.1063/1.4901018 | 2014 |
Margit Schwikowski, Theo M Jenk, Dieter Stampfli, Felix Stampfli (2014) A new thermal drilling system for high-altitude or temperate glaciers. Annals of Glaciology, 55, (68), 131-136. doi: 10.3189/2014AoG68A024. https://doi.org/10.3189/2014AoG68A024 | 2014 |
Victor Zagorodnov, Lonnie G Thompson (2014) Thermal electric ice-core drills: history and new design options for intermediate-depth drilling. Annals of Glaciology, 55, (68), 322-330. doi: 10.3189/2014AoG68A012. https://doi.org/10.3189/2014AoG68A012 | 2014 |
Lee Michaelides (2012) Inventions: Thermoblast Flame-Jet Drill. Dartmouth Engineer Magazine, https://engineering.dartmouth.edu/magazine/inventions-thermoblast-flame-jet-dri… | 2012 |
Jens Biele, Stephan Ulamec, Martin Hilchenbach, Norbert Kömle (2011) In situ analysis of Europa ices by short-range melting probes. Advances in Space Research, 48, (4), 755-763. doi: 10.1016/j.asr.2010.02.029. https://doi.org/10.1016/j.asr.2010.02.029 | 2011 |
Nikolay I Vasiliev, Pavel Talalay, Vostok Deep Ice Core Drilling Parties (2011) Twenty Years of Drilling the Deepest Hole in Ice. Scientific Drilling, 11, 41-45. doi: 10.2204/iodp.sd.11.05.2011. https://doi.org/10.2204/iodp.sd.11.05.2011 | 2011 |
Charles R Bentley, Bruce R Koci, Laurent Augustin, Robin J Bolsey, James A Green, Jay D Kyne, Donald A Lebar, William P Mason, Alexander J Shturmakov, Hermann F Engelhardt, William D Harrison, Michael H Hecht, Victor Zagorodnov (2009) Chapter 4: Ice Drilling and Coring. Drilling in Extreme Environments: Penetration and Sampling on Earth and other Planets (eds Y. Bar-Cohen and K. Zacny), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 221-308. doi: 10.1002/9783527626625.ch4. https://doi.org/10.1002/9783527626625.ch4 | 2009 |