Drill, DISC

2017 Winter

IDPO Ice Core Working Group Tackles Science-Technology Tradeoffs

The IDPO Ice Core Working Group (ICWG) meeting was held in Alexandria, VA on January 22, 2018. Scientific findings from recent drilling activities were presented, and future possible investigations in Greenland and Antarctica were identified and discussed. The ICWG reaffirmed Hercules Dome as the priority deep drilling site for the community, due to its key location in archiving evidence of past dramatic changes in the West Antarctic Ice Sheet. Science-technology tradeoffs were discussed regarding use of the Foro 3000 Drill versus the DISC Drill at Hercules Dome; the DISC Drill delivers a larger volume of ice, however the Foro 3000 Drill has much lower logistical requirements. The ICWG came to agreement that the Foro 3000 Drill will be the drill of choice for this important site.

2017 Summer

Equipment Development

DISC Drill versus Foro 3000 Analysis
Per discussions between IDPO, IDDO and community scientists, the next deep U.S. ice coring project will likely target Hercules Dome, Antarctica. IDDO, with assistance from Antarctic Support Contract and IDPO, is currently working with community representatives on a DISC Drill versus Foro 3000 Drill analysis, to help determine which system should be used for drilling at Hercules Dome. The analysis results will be summarized into a report for use by NSF and the science community.

2016 Fall

Equipment Development

Deep Ice Sheet Coring (DISC) Drill
Any further development work for the DISC Drill remains on hold, until the science community identifies if/when the system will next be deployed.

2016 Summer

Equipment Development

Deep Ice Sheet Coring (DISC) Drill
Any further development work for the DISC Drill remains on hold, until the science community identifies if/when the system will next be deployed.

2016 Spring

Equipment Development

Deep Ice Sheet Coring Drill
IDDO has temporarily put any further development work for the Deep Ice Sheet Coring (DISC) Drill on hold, until the science community identifies if/when the system will next be deployed. Some minor maintenance and cleaning up of the LabVIEW software was completed during the quarter. A good portion of the DISC Drill cargo also returned from Antarctica in April, and is being unpacked and dried.

2015 Winter

Successful Support Across Antarctica

WAIS Divide Deep (PI Albert)
IDDO Driller Jim Koehler arrived at WAIS Divide on 1/14/16, following weather and aircraft delays, and worked expediently to prepare the remaining DISC Drill items for return shipment to the U.S. Koehler also worked with ASC personnel to extend the borehole casing to two feet above the Arch floor level.

The borehole casing extension at WAIS Divide, Antarctica. Credit: Jim Koehler

2015 Winter

Equipment Development

Deep Ice Sheet Coring Drill
As IDDO prepares to make modifications, upgrades, and repairs to the Deep Ice Sheet Coring (DISC) Drill equipment in preparation for its future use in Antarctica, IDDO Project Manager Alex Shturmakov and engineer Josh Goetz reviewed drilling logs and reports in an effort to understand and prioritize necessary modifications and upgrades. In the coming months, IDDO plans to work on preliminary sonde modifications in an effort to collect 4-meter long cores per run, to determine an optimal method of installing heavy equipment in the field without deploying the large blue gantry crane, and to upgrade the aging control system hardware to allow for optimization of the LabVIEW software.

2014 Winter

WAIS Divide Schedule Challenges and Achievements

With the 2013-2014 field season at WAIS Divide canceled due to the government shutdown, IDDO re-planned its efforts for 2014-2015 for disassembly and packing of the DISC Drill at the site. Four IDDO personnel deployed from the U.S. in early December, and three ended up facing 20 days of aircraft and weather delays in McMurdo. With excellent teamwork between IDDO, ASC, and the borehole logging scientists (also at WAIS Divide this year), as well as NSF and ASC's willingness to extend the field season at WAIS Divide in light of the delays, the teams were able to successfully complete the majority of logging objectives for the season! In addition the team was able to dismantle much of the DISC Drill equipment in a very short amount of time. A portion of the drill will now return to Madison and the rest will remain at WAIS Divide over winter until future flight opportunities in 2015-2016. IDDO and ASC will continue to work closely together to plan for disassembly and removal of the remaining items from the drill arch, including IDDO's yellow gantry crane, the crane rails, and the drill control room, as well as to coordinate extending of the borehole casing up to the arch floor level next year.

The DISC Drill winch is lifted out of the winch pit. Credit: Jeffrey Donenfeld

Cargo staged in the drill arch for over-winter storage. Credit: Jeffrey Donenfeld

2013 Summer

Equipment Development

DISC Drill/Replicate Coring System
By June of 2013, IDDO completed the preparation of many DISC/Replicate Coring System components for storage. Small repairs, upgrades, and the necessary component maintenance have been completed. IDDO also developed a comprehensive list of all mechanical and electrical subsystem modifications and repairs needed for the drill's future re-deployment.

2013 Spring

Planning for the Future

DISC Drill - Updated Science Requirements:
IDPO discussed with IDDO the need for updated Science Requirements for long range planning for the DISC Drill. IDPO will work with the community and with IDDO this summer to revisit the requirements and establish updated science requirements that will establish a direction for work on the DISC Drill in coming years, including preparation for very cold conditions.

2012 Winter

Replicate Coring Ice Drilling Technology is Successful

For the first time, significant innovations in ice drilling engineering are providing scientists with replicate ice cores from targeted depths and directions in the ice sheet!

The newly developed, state-of-the-art Replicate Ice Coring System was deployed in December 2012 to re-enter the 6.5-inch diameter deep borehole at WAIS Divide, Antarctica, and successfully allowed the researchers to drill through the wall of the 3,405 meter deep parent borehole and collect a total of 285 meters of additional core from five of the most interesting time periods in the WAIS Divide climate record.

schematic of the replicate coring sonde

The Replicate Ice Coring System is capable of retrieving additional ice cores from specific depths on the uphill side of the main (parent) borehole. The Replicate Coring technique, developed and tested by the IDDO engineers as part of the Deep Ice Sheet Coring (DISC) Drill, is a key advance, because it allows scientists to take samples from specific levels of a parent borehole without impeding the hole itself, leaving the parent borehole open for future logging of information.

The Replicate Ice Coring System collects additional ice at depths of interest by deploying into an existing borehole and then deviating from it. The drill uses two steering actuator sections to tilt itself in the parent borehole by applying sidewards force against the borehole wall. In the first step of the process, the broaching cutter head is deployed to the target depth. Using the actuators, the drill is tipped to the high ("up hill") side of the borehole to engage the cutters. Ice is removed in repeated passes of approximately 15 meters in the up-stroke. In the second step of the process, a milling head is deployed and creates a landing for the coring head. In the third step of the process, a coring head removes a 20 mm kerf and allows a 108 mm diameter core to enter the core barrel. Two meters of core are removed per trip. The coring is repeated until all of the desired replicate ice from the target depth is obtained.

The Replicate Ice Coring System builds on the existing infrastructure of the DISC Drill and thus requires substantial logistics and infrastructure support. However, the design and engineering behind the system is such that it can be scaled down for use with smaller, more agile drilling systems as well. The downhole portion of the DISC Drill, the sonde, was significantly modified to meet the requirements of steering out of the parent hole. The major components of the replicate sonde are described below.

Cable Interface Section
The existing cable interface section of the DISC Drill provides the connection to 4km of fiber optic cable.

Upper Actuator Section
The upper actuator section steers the drill, and with the anti-torque levels extended keeps the drill from spinning during cutting operations.

Instrument Section
The instrument section provides power and communications to operate the drill.

Lower Actuator Section
The lower actuator is identical to the upper actuator, but is configured with discs on the levers to provide smooth navigation.

Pump/Motor Section
The pump/motor section has a powerful pump for chip transport and contains the cutter motor.

Lower Sonde
The lower sonde includes chip barrels that collect the chips that are cut during coring, a core barrel to collect the core, and the coring head. The lower sonde can be assembled in multiple configurations to meet the needs of the different stages of the replicate coring process.

To see a demonstration of how the Replicate Ice Coring System works, visit:

Image of actuator section of the replicate sonde

The actuator section of the replicate sonde is shown. Photo: Chris Gibson, UW-Madison, IDDO

Image of the broaching head of the replicate sonde

The broaching head of the replicate sonde is shown. Photo: Chris Gibson, UW-Madison, IDDO

Image of the replicate sonde with the milling head

The replicate sonde with the milling head is shown. Photo: Chris Gibson, UW-Madison, IDDO

The replicate coring head with the first replicate ice core ever taken from the uphill side of an ice core borehole

The coring head with the first replicate ice core ever taken from the "uphill" side of an ice core borehole is shown. Photo: Jay Johnson, UW-Madison, IDDO

2012 Winter

NSF Press Release on the Completion of Deep Drilling at WAIS Divide, Antarctica

The deep drilling at WAIS Divide, Antarctica has come to a close. It took eight field seasons to prepare the remote field camp, to drill the 3,405 meter deep ice core (the longest ice core in U.S. history), and to collect the 285 meters of valuable replicate core (see story above), but we did it. On February 5, the National Science Foundation (NSF) released a press release celebrating this historic accomplishment. In case you didn't see the press release, it is available at:

photo of press release on NSF website

In addition to the NSF press release, The Antarctic Sun also released a great story about the success of replicate coring at WAIS Divide this season. The story is available at:

2012 Fall

Future Plans for the DISC Drill

Scientists interested in using the DISC Drill in the future need to work with the Ice Drilling Program Office - Science Advisory Board (http://icedrill.org/about/sab.shtml) to formulate their plans and to ensure that their science is articulated in the Long Range Science Plan (http://icedrill.org/scientists/scientists.shtml#scienceplan), which is updated annually each spring. The current schedule for the DISC Drill is as follows:

  • Dec 2012 - Jan 2013: Replicate coring at WAIS Divide, Antarctica
  • Dec 2013: Disassemble and pack DISC Drill at WAIS Divide
  • Nov 2014 - Jan 2015: Disassemble arch and prepare for traverse back to McMurdo Station
  • Nov 2015 - Jan 2016: Traverse DISC Drill from WAIS Divide to McMurdo Station
  • Feb 2016: Retrograde DISC Drill to CONUS via vessel
  • May 2016: DISC Drill arrives in Madison, WI
  • May 2016 - Nov 2017: Inspect, re-build, re-design and replace drill system components if necessary

Given the anticipated schedule above, the DISC Drill could be ready for shipment to the field again in late 2017. For the latest information and schedule for the DISC Drill, visit: http://icedrill.org/equipment/disc.shtml

2012 Summer

Replicate Coring System Characterization Testing Underway

After review of data collected during the previous Antarctic field season and in preparation for the 2012-2013 WAIS Divide field season, IDDO has designed and fabricated a sophisticated test set-up to determine the root causes of shortcomings experienced by the Replicate Coring system. During the third quarter, IDDO was able to complete a major portion of a "sonde-in-the-borehole" test of the Replicate Coring System to determine drill sonde deflection, to verify the mechanical system analyses and to measure force at cutter head for given set points. This will assist IDDO engineers in making system modifications necessary to successfully collect replicate core during the next field season. The root cause of the intermittent instrument section faults witnessed in the field and during the system test in Madison was identified; the fix is designed and is currently being implemented. Troubleshooting of actuator motors, pressure testing of motor sections and modifications of instrument section circuit boards and LabVIEW software modifications were all successfully completed. System testing and modifications will continue into the Fourth Quarter. The large DISC Drill winch motor was also successfully repaired, rebuilt and returned to IDDO.

Photo of replicate coring system characterization testing

Replicate coring system testing in Madison, WI.

Photo of replicate coring system characterization testing

Cooling jacket for replicate coring instrument section.

2012 Spring

DISC Drill Replicate Coring Testing

This season's maiden voyage of the DISC Drill's Replicate Coring capability proved to be both challenging and enlightening. While no core was obtained, IDDO engineers gained a great deal of insight into the process of creating a deviation for replicate coring. A new borehole camera proved valuable in assessing the results of the deviation effort. The video and operating data are being analyzed to aid in the modification to replicate components in order to improve chances of success during the upcoming replicate coring production season. IDDO has held several internal design reviews and, in addition, IDPO led an external review of Replicate Coring modifications held in Madison on March 27-28. Dr. George Cooper, Emeritus Professor at U.C. Berkeley and Dr. Alfred Eustes, Associate Professor at Colorado School of Mines participated as external reviewers. The effort to carefully review and analyze the recent field season experience has led to the design of tests and test fixtures needed to improve the replicate coring system.

Photo of replicate coring system's broaching head

The Replicate Coring System's milling head with cutters. Photo courtesy of Jay Johnson.

2011 Winter

Drilling Completed of the WAIS Divide Main Ice Core

On December 31, 2011, the drilling of the Antarctic WAIS Divide ice core was successfully completed. The DISC Drill produced excellent quality core over the entire 3,405 m depth, including through the technically challenging warm ice. This significant achievement was the culmination of over a decade of work including the design and construction of the DISC Drill by IDDO and its predecessor ICDS.

The ice core retrieved from the site is anticipated to yield the first high-resolution southern hemisphere record of greenhouse gases and climate comparable to the Greenland records, and will contribute significantly to improved understanding of climate variability over the last 62,000 years. Unlike the Greenland cores, however, the WAIS Divide ice core will also provide a record of carbon dioxide; and that record will have a higher time-resolution during the transition from the last glacial period to the current warm interval than any other existing ice core record.

To view an excellent, short NSF-produced video about the WAIS Divide ice core project, visit: http://waisdivide.unh.edu/about/index.shtml

Photo of IDDO drilling team

The IDDO drilling team celebrate the completion of the WAIS Divide deep ice core. Pictured are (L to R) Chuck Zander, Josh Goetz, Michael Jayred, Kristina Dahnert, Elizabeth Morton, and Paul Sendelbach. Photo courtesy of Kristina Dahnert.

2011 Winter

Replicate Coring System

IDDO completed the bench testing of replicate coring components prior to their being shipped to WAIS Divide. In addition, IDDO designed and built a new inclinometer control board with greater accuracy for positioning the sonde in the borehole for replicate coring, developed a bumper for the broaching cutter head to protect the borehole during the lowering and raising of the drill sonde, and designed and built a downhole camera system. IDDO conducted field-testing of the replicate coring system at WAIS Divide in January 2012, and the system will be used for production drilling at WAIS Divide during the 2012-13 field season.

For more information about the Replicate Coring System, visit: http://icedrill.org/equipment/development.shtml#replicate

2011 Fall

Replicate Coring System

IDDO completed fabrication and bench testing of the DISC Drill's Replicate Coring System, and plans to conduct field-testing of the system at WAIS Divide in the latter part of the 2011-2012 Antarctic field season. Production drilling with the replicate coring system at WAIS Divide is planned for the 2012- 2013 Antarctic field season.

For the latest news regarding 2011-2012 WAIS Divide field season progress, visit: http://waisdivide.unh.edu

Photo of Replicate Coring System

Testing of the Replicate Coring System in the lab.

Photo of Replicate Coring System

Close-up view of the Replicate Coring System actuator section.

2011 Spring

Deepest U.S. Ice Core Drilled in West Antarctica

On January 28, 2011, the DISC Drill reached its much-anticipated bottom depth of 3,331 meters at WAIS Divide, Antarctica. Despite a field season fraught with challenges, the drill crew surpassed previous depth records set at Dome Fuji, Dome C and GISP-2. On January 17, 2011, the WAIS Divide core became the deepest U.S. ice core ever drilled, surpassing the GISP-2 depth of 3,056 meters! For more information about the field season, visit: http://waisdivide.unh.edu/news/index.shtml

To view a short video about the DISC Drill, visit: http://icedrill.org/equipment/videos.shtml#disc

2011 Spring

Unique Ice Drilling Technology Developed for Increased Sampling of Key Events

The first-ever Replicate Ice Coring technology is progressing toward its debut in the field next year (January 2012) at WAIS Divide as IDDO engineers design, assemble, and test a system that will allow the DISC Drill to be steered and recover cores from branches deviating from the main borehole. This new technology enables gathering of additional ice core samples containing key climate information on abrupt changes, drilled from targeted depths kilometers beneath the ice surface.

2010 Winter

Drilling Support to Science Projects

WAIS Divide Ice Core - Deep
Despite problems with noisy control boards and fluid leakage into the sonde, good progress was made. The DISC Drill continued to produce ice cores of excellent core quality and on January 28, 2010 the season's depth goal of 3,330 meters was successfully reached.

2010 Winter

DISC Drill

A number of problems with the DISC Drill sondes (primarily the motor controllers and leaking housings) manifested themselves at WAIS Divide this season. While problems that require correction after the season are expected, these appear to be more serious than normal and are expected to require more effort to correct. The additional effort needed to make the repairs and modifications cannot be estimated until the drillers and the equipment return from the field and the equipment is assessed.

2010 Winter

Replicate Coring System

The mechanical design and testing of the Replicate Coring system is a little ahead of schedule. The electronics design is somewhat delayed due to the problems with not completing the DISC motor controllers prior to the start of the 2010-11 WAIS Divide field season. This delay plus the need to correct the problems experienced with the DISC motor controllers at WAIS Divide will impact the cost of completing the design, fabrication, and testing of the electronics systems for the Replicate Coring system. However, IDDO feels confident that the Replicate Coring system will still be ready for use at WAIS Divide during the 2011-12 field season.

2010 Fall

Replicate Coring System

The community proposes to begin replicate coring at WAIS Divide during the 2011-2012 Antarctic field season. The conceptual design of the Replicate Coring System was completed in FFY2009 and substantial progress was made in FFY2010 in translating the replicate coring concept into a detailed mechanical design. During the coming year the design of the lower sonde (core and screen barrels and cutting head/cutters) will be completed as will the sensor and control electronics design and software development. Assembly and "bench" testing of the actuators and lower sonde are also scheduled for completion. The entire system will be integrated and tested to the extent possible before its shipment to WAIS Divide for use during the 2011-2012 field season.

2010 Summer

WAIS Divide Deep Ice Core

IDDO suffered a set-back in its development of replacements for outdated motor control modules for the DISC Drill when it was discovered during testing that the design was inadequate and the electronic circuits would have to be re-designed, prototyped, tested, and manufactured. This problem, along with the need to extensively modify drill system sheaves, the need to modify the azimuth measurement system and the resignation of an electrical engineer put a heavy workload on the one remaining electrical engineer. IDDO has contracted an electrical engineer to assist in the tasks.

The unexpected issues with the DISC Drill Development also affected the DISC Drill Replicate Coring System Development Project as resources planned for the project are needed to complete work on the DISC Drill before the 2010-2011 WAIS Divide field season. However, IDDO is confident that the replicate coring system will be ready for first use at WAIS Divide during the 2011-2012 field season.

2010 Spring

Update of Field Drilling Support (January - March, 2010)

Agile drill field projects in Antarctica during January-March included coring on the Amundsen Coast (hand auger plus sidewinder) and Taylor Glacier (hand auger plus sidewinder), and the conclusion of a successful season for the Amundsen Basin seismic project (RAM Drill). While all these field projects were a success, the PIs gave helpful feedback to IDPO and IDDO will continue to develop its drill management procedures to better maintain, repair, and provide science support for all types of drills.

The WAIS Divide Ice Core Project had a successful season with 1,050 meters of high-quality core retrieved and drilling progressing to a total depth of 2,564 meters, only 36 m short of the season's goal in spite of more than a week of delay getting into the site. The problem with hole inclination was corrected in the field, and the drillers were able to reduce inclination from just over 5 degrees to approximately 4 degrees. The new thin kerf core barrel increased core lengths per run from ~2.7 m to 3.3 m.

More information about these projects can be viewed at: http://icedrill.org/about/previous_projects.shtml

photo RAM drill

Conducting seismic research in West Antarctica using the RAM Drill. Photo: Tony Wendricks

photo DISC drill

The DISC Drill at WAIS Divide with a run of ice core. Photo: Peter Neff

2010 Spring

Development Highlights (January - March, 2010)

Replicate coring: In the second quarter FFY2010, design of the "actuated" anti-torques, which will allow the drill to be steered, was completed. IDDO ordered components for the prototype model of the anti-torque actuators and test fixture. A control program was written to allow testing of the mechanical system, and initial testing began. Replicate coring capability for the DISC drill will be ready beginning with the 2011/12 Antarctic field season.

A new drill for intermediate depth drilling: A white paper justifying the need for an intermediate drill is in preparation by Eric Saltzman, Chair of SAB, and Eric Steig, ICWG representative. Because the new NZ drill (designed from the Danish Hans Tausen drill) may provide an excellent prototype for this drill, detailed science requirements will be developed with the broader community by IDPO-IDDO after results of NZ drill testing at NEEM this coming summer. IDDO engineer Tanner Kuhl will be at NEEM to witness the testing of the NZ drill. This will give an excellent first-person assessment of aspects of the drill that should be replicated and identification of possible problem areas. Opportunities for funding acquisition of a drill are being explored.

Browse Stories by Topic

Requesting Ice Drilling Support

If you are preparing a proposal that includes any kind of support from the IDPO-IDDO, you must contact IDPO ( IceDrill@Dartmouth.edu ) at least six weeks before you submit your proposal to obtain a Letter of Support and a Scope of Work document that MUST be included in your proposal.

Program Information

The U.S. Ice Drilling Program conducts integrated planning for the ice drilling science and technology communities, and provides drilling technology and operational support that enables the community to advance the frontiers of climate and environmental science.

IDPO-IDDO on Twitter